--- library_name: transformers language: - ne license: mit base_model: kiranpantha/w2v-bert-2.0-nepali tags: - generated_from_trainer datasets: - kiranpantha/OpenSLR54-Balanced-Nepali metrics: - wer model-index: - name: Wave2Vec2-Bert2.0 - Kiran Pantha results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: OpenSLR54 type: kiranpantha/OpenSLR54-Balanced-Nepali config: default split: test args: 'config: ne, split: train,test' metrics: - name: Wer type: wer value: 0.4301989457575242 --- # Wave2Vec2-Bert2.0 - Kiran Pantha This model is a fine-tuned version of [kiranpantha/w2v-bert-2.0-nepali](https://huggingface.co/kiranpantha/w2v-bert-2.0-nepali) on the OpenSLR54 dataset. It achieves the following results on the evaluation set: - Loss: 0.4052 - Wer: 0.4302 - Cer: 0.1029 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 0.7515 | 0.15 | 300 | 0.4814 | 0.4911 | 0.1183 | | 0.6554 | 0.3 | 600 | 0.5699 | 0.5382 | 0.1385 | | 0.6723 | 0.45 | 900 | 0.5463 | 0.5401 | 0.1395 | | 0.6635 | 0.6 | 1200 | 0.5244 | 0.5043 | 0.1250 | | 0.6132 | 0.75 | 1500 | 0.4725 | 0.4831 | 0.1184 | | 0.5786 | 0.9 | 1800 | 0.4620 | 0.4702 | 0.1147 | | 0.5639 | 1.05 | 2100 | 0.4810 | 0.4668 | 0.1140 | | 0.4863 | 1.2 | 2400 | 0.4639 | 0.4766 | 0.1151 | | 0.4784 | 1.35 | 2700 | 0.4527 | 0.4611 | 0.1108 | | 0.456 | 1.5 | 3000 | 0.4229 | 0.4458 | 0.1089 | | 0.4613 | 1.65 | 3300 | 0.4460 | 0.4478 | 0.1095 | | 0.4506 | 1.8 | 3600 | 0.4166 | 0.4413 | 0.1047 | | 0.4369 | 1.95 | 3900 | 0.4052 | 0.4302 | 0.1029 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.4.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1