File size: 2,735 Bytes
a8fa292
 
 
 
85beddf
a8fa292
 
 
 
 
 
 
 
 
 
 
 
 
7e2fa42
 
 
 
a8fa292
 
 
 
85beddf
a8fa292
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
---
language: 
- en
tags:
- qa
- summarization
- emotion-detection
license: Apache 2.0
datasets:
- coqa
- squad_v2
- go_emotions
- cnn_dailymail
metrics:
- f1
---
# T5 Base with QA + Summary + Emotion

## Dependencies

Requires transformers>=4.0.0

## Description

This model was finetuned on the CoQa, Squad 2, GoEmotions and CNN/DailyMail.

It achieves a score of **F1 76.7** on the Squad 2 dev set and a score of **F1 68.5** on the CoQa dev set.

Summarisation and emotion detection has not been evaluated yet.

## Usage

### Question answering

```python
from transformers import T5ForConditionalGeneration, T5Tokenizer
model = T5ForConditionalGeneration.from_pretrained("kiri-ai/t5-base-qa-summary-emotion")
tokenizer = T5Tokenizer.from_pretrained("t5-base")

def get_answer(question, prev_qa, context):
    input_text = [f"q: {qa[0]} a: {qa[1]}" for qa in prev_qa]
    input_text.append(f"q: {question}")
    input_text.append(f"c: {context}")
    input_text = " ".join(input_text)
    features = tokenizer([input_text], return_tensors='pt')
    tokens = model.generate(input_ids=features['input_ids'], 
            attention_mask=features['attention_mask'], max_length=64)
    return tokenizer.decode(tokens[0], skip_special_tokens=True)

print(get_answer("Why is the moon yellow?", "I'm not entirely sure why the moon is yellow.")) # unknown

context = "Elon Musk left OpenAI to avoid possible future conflicts with his role as CEO of Tesla."

print(get_answer("Why not?", [("Does Elon Musk still work with OpenAI", "No")], context)) # to avoid possible future conflicts with his role as CEO of Tesla
```

### Summarisation

```python
from transformers import T5ForConditionalGeneration, T5Tokenizer
model = T5ForConditionalGeneration.from_pretrained("kiri-ai/t5-base-qa-summary-emotion")
tokenizer = T5Tokenizer.from_pretrained("t5-base")

def summary(context):
    input_text = f"summarize: {context}"
    features = tokenizer([input_text], return_tensors='pt')
    tokens = model.generate(input_ids=features['input_ids'], 
            attention_mask=features['attention_mask'], max_length=64)
    return tokenizer.decode(tokens[0], skip_special_tokens=True)
```

### Emotion detection

```python
from transformers import T5ForConditionalGeneration, T5Tokenizer
model = T5ForConditionalGeneration.from_pretrained("kiri-ai/t5-base-qa-summary-emotion")
tokenizer = T5Tokenizer.from_pretrained("t5-base")

def emotion(context):
    input_text = f"emotion: {context}"
    features = tokenizer([input_text], return_tensors='pt')
    tokens = model.generate(input_ids=features['input_ids'], 
            attention_mask=features['attention_mask'], max_length=64)
    return tokenizer.decode(tokens[0], skip_special_tokens=True)
```