--- language: - en tags: - qa - summarization - emotion-detection license: Apache 2.0 datasets: - coqa - squad_v2 - go_emotions - cnn_dailymail metrics: - f1 --- # T5 Base with QA + Summary + Emotion ## Dependencies Requires transformers>=4.0.0 ## Description This model was finetuned on the CoQa, Squad 2, GoEmotions and CNN/DailyMail. It achieves a score of **F1 76.7** on the Squad 2 dev set and a score of **F1 68.5** on the CoQa dev set. Summarisation and emotion detection has not been evaluated yet. ## Usage ### Question answering ```python from transformers import T5ForConditionalGeneration, T5Tokenizer model = T5ForConditionalGeneration.from_pretrained("kiri-ai/t5-base-qa-summary-emotion") tokenizer = T5Tokenizer.from_pretrained("t5-base") def get_answer(question, prev_qa, context): input_text = [f"q: {qa[0]} a: {qa[1]}" for qa in prev_qa] input_text.append(f"q: {question}") input_text.append(f"c: {context}") input_text = " ".join(input_text) features = tokenizer([input_text], return_tensors='pt') tokens = model.generate(input_ids=features['input_ids'], attention_mask=features['attention_mask'], max_length=64) return tokenizer.decode(tokens[0], skip_special_tokens=True) print(get_answer("Why is the moon yellow?", "I'm not entirely sure why the moon is yellow.")) # unknown context = "Elon Musk left OpenAI to avoid possible future conflicts with his role as CEO of Tesla." print(get_answer("Why not?", [("Does Elon Musk still work with OpenAI", "No")], context)) # to avoid possible future conflicts with his role as CEO of Tesla ``` ### Summarisation ```python from transformers import T5ForConditionalGeneration, T5Tokenizer model = T5ForConditionalGeneration.from_pretrained("kiri-ai/t5-base-qa-summary-emotion") tokenizer = T5Tokenizer.from_pretrained("t5-base") def summary(context): input_text = f"summarize: {context}" features = tokenizer([input_text], return_tensors='pt') tokens = model.generate(input_ids=features['input_ids'], attention_mask=features['attention_mask'], max_length=64) return tokenizer.decode(tokens[0], skip_special_tokens=True) ``` ### Emotion detection ```python from transformers import T5ForConditionalGeneration, T5Tokenizer model = T5ForConditionalGeneration.from_pretrained("kiri-ai/t5-base-qa-summary-emotion") tokenizer = T5Tokenizer.from_pretrained("t5-base") def emotion(context): input_text = f"emotion: {context}" features = tokenizer([input_text], return_tensors='pt') tokens = model.generate(input_ids=features['input_ids'], attention_mask=features['attention_mask'], max_length=64) return tokenizer.decode(tokens[0], skip_special_tokens=True) ```