Lukas Pfahler
commited on
Commit
•
8241db4
1
Parent(s):
426fbbd
include modeling files in repo
Browse files- __init__.py +0 -0
- configuration_kosmos2_5.py +330 -0
- image_processing_kosmos2_5.py +341 -0
- modeling_kosmos2_5.py +0 -0
- processing_kosmos2_5.py +145 -0
__init__.py
ADDED
File without changes
|
configuration_kosmos2_5.py
ADDED
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""KOSMOS-2.5.5 model configuration"""
|
16 |
+
|
17 |
+
import os
|
18 |
+
from typing import Union
|
19 |
+
|
20 |
+
from transformers.configuration_utils import PretrainedConfig
|
21 |
+
from transformers.utils import logging
|
22 |
+
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
|
26 |
+
|
27 |
+
class Kosmos2_5TextConfig(PretrainedConfig):
|
28 |
+
r"""
|
29 |
+
This is the configuration class to store the configuration of a [`Kosmos2_5TextModel`]. It is used to instantiate a
|
30 |
+
KOSMOS-2.5 text decoder according to the specified arguments, defining the model architecture. Instantiating a
|
31 |
+
configuration with the defaults will yield a similar configuration to that of the text decoder of the KOSMOS-2.5
|
32 |
+
[microsoft/KOSMOS-2.5](https://huggingface.co/microsoft/KOSMOS-2.5) architecture.
|
33 |
+
|
34 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
35 |
+
documentation from [`PretrainedConfig`] for more information.
|
36 |
+
|
37 |
+
Args:
|
38 |
+
vocab_size (`int`, *optional*, defaults to 108481):
|
39 |
+
Vocabulary size of the Kosmos2_5 model. Defines the number of different tokens that can be represented by the
|
40 |
+
`inputs_ids` passed when calling [`Kosmos2_5Model`].
|
41 |
+
max_position_embeddings (`int`, *optional*, defaults to 2048):
|
42 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
43 |
+
just in case (e.g., 512 or 1024 or 2048).
|
44 |
+
embed_dim (`int`, *optional*, defaults to 2048):
|
45 |
+
Dimensionality of the layers and the pooler layer.
|
46 |
+
layers (`int`, *optional*, defaults to 24):
|
47 |
+
Number of hidden layers in the Transformer encoder.
|
48 |
+
ffn_dim (`int`, *optional*, defaults to 8192):
|
49 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
50 |
+
attention_heads (`int`, *optional*, defaults to 32):
|
51 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
52 |
+
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
|
53 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
54 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
55 |
+
dropout (`float`, *optional*, defaults to 0.1):
|
56 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
57 |
+
attention_dropout (`float`, *optional*, defaults to 0.1):
|
58 |
+
The dropout ratio for the attention probabilities.
|
59 |
+
activation_dropout (`float`, *optional*, defaults to 0.0):
|
60 |
+
The dropout ratio for activations inside the fully connected layer.
|
61 |
+
layerdrop (`float`, *optional*, defaults to 0.0):
|
62 |
+
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
63 |
+
for more details.
|
64 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
|
65 |
+
The epsilon used by the layer normalization layers.
|
66 |
+
init_std (`float`, *optional*, defaults to 0.02):
|
67 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
68 |
+
scale_embedding (`bool`, *optional*, defaults to `True`):
|
69 |
+
Scale embeddings by diving by sqrt(embed_dim).
|
70 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
71 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
72 |
+
```"""
|
73 |
+
|
74 |
+
model_type = "kosmos_2_5_text_model"
|
75 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
76 |
+
attribute_map = {
|
77 |
+
"num_attention_heads": "attention_heads",
|
78 |
+
"hidden_size": "embed_dim",
|
79 |
+
"num_hidden_layers": "layers",
|
80 |
+
}
|
81 |
+
|
82 |
+
def __init__(
|
83 |
+
self,
|
84 |
+
vocab_size=108481,
|
85 |
+
max_position_embeddings=4096,
|
86 |
+
embed_dim=1536,
|
87 |
+
layers=24,
|
88 |
+
ffn_dim=6144,
|
89 |
+
attention_heads=16,
|
90 |
+
activation_function="gelu",
|
91 |
+
dropout=0.1,
|
92 |
+
attention_dropout=0,
|
93 |
+
activation_dropout=0.0,
|
94 |
+
layerdrop=0.0,
|
95 |
+
layer_norm_eps=1e-5,
|
96 |
+
init_std=0.02,
|
97 |
+
scale_embedding=True,
|
98 |
+
use_cache=True,
|
99 |
+
pad_token_id=1,
|
100 |
+
bos_token_id=0,
|
101 |
+
eos_token_id=2,
|
102 |
+
**kwargs,
|
103 |
+
):
|
104 |
+
super().__init__(
|
105 |
+
pad_token_id=pad_token_id,
|
106 |
+
bos_token_id=bos_token_id,
|
107 |
+
eos_token_id=eos_token_id,
|
108 |
+
**kwargs,
|
109 |
+
)
|
110 |
+
|
111 |
+
self.vocab_size = vocab_size
|
112 |
+
self.max_position_embeddings = max_position_embeddings
|
113 |
+
self.embed_dim = embed_dim
|
114 |
+
self.layers = layers
|
115 |
+
self.ffn_dim = ffn_dim
|
116 |
+
self.attention_heads = attention_heads
|
117 |
+
self.activation_function = activation_function
|
118 |
+
self.dropout = dropout
|
119 |
+
self.attention_dropout = attention_dropout
|
120 |
+
self.activation_dropout = activation_dropout
|
121 |
+
self.layerdrop = layerdrop
|
122 |
+
self.layer_norm_eps = layer_norm_eps
|
123 |
+
self.init_std = init_std
|
124 |
+
self.scale_embedding = scale_embedding
|
125 |
+
self.use_cache = use_cache
|
126 |
+
|
127 |
+
@classmethod
|
128 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
129 |
+
cls._set_token_in_kwargs(kwargs)
|
130 |
+
|
131 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
132 |
+
|
133 |
+
# get the text config dict if we are loading from Kosmos2_5Config
|
134 |
+
if config_dict.get("model_type") == "kosmos-2.5":
|
135 |
+
config_dict = config_dict["text_config"]
|
136 |
+
|
137 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
138 |
+
logger.warning(
|
139 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
140 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
141 |
+
)
|
142 |
+
|
143 |
+
return cls.from_dict(config_dict, **kwargs)
|
144 |
+
|
145 |
+
|
146 |
+
class Kosmos2_5VisionConfig(PretrainedConfig):
|
147 |
+
r"""
|
148 |
+
This is the configuration class to store the configuration of a [`Kosmos2_5VisionModel`]. It is used to
|
149 |
+
instantiate a Kosmos2_5 vision model according to the specified arguments, defining the model architecture.
|
150 |
+
Instantiating a configuration defaults will yield a similar configuration to that of the kosmos-2.5
|
151 |
+
[microsoft/kosmos-2.5](https://huggingface.co/microsoft/kosmos-2.5) architecture.
|
152 |
+
|
153 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
154 |
+
documentation from [`PretrainedConfig`] for more information.
|
155 |
+
|
156 |
+
Args:
|
157 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
158 |
+
Dimensionality of the encoder layers and the pooler layer.
|
159 |
+
patch_embed_hidden_size (`int`, *optional*, defaults to 768):
|
160 |
+
Dimensionality of the input patch_embedding layer in the Transformer encoder.
|
161 |
+
d_ff (`int`, *optional*, defaults to 2048):
|
162 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
163 |
+
d_kv (`int`, *optional*, defaults to 64):
|
164 |
+
Dimensionality of the key, query, value projections per attention head.
|
165 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
166 |
+
Number of hidden layers in the Transformer encoder.
|
167 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
168 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
169 |
+
dense_act_fn (`str` or `function`, *optional*, defaults to `"gelu_new"`):
|
170 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
171 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"gelu"` are supported.
|
172 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-06):
|
173 |
+
The epsilon used by the layer normalization layers.
|
174 |
+
dropout_rate (`float`, *optional*, defaults to 0.0):
|
175 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
176 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
177 |
+
The dropout ratio for the attention probabilities.
|
178 |
+
initializer_range (`float`, *optional*, defaults to 1e-10):
|
179 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
180 |
+
initializer_factor (`float`, *optional*, defaults to 1.0):
|
181 |
+
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
|
182 |
+
testing).
|
183 |
+
seq_len (`int`, *optional*, defaults to 4096):
|
184 |
+
Maximum sequence length (here number of patches) supported by the model.
|
185 |
+
Example:
|
186 |
+
|
187 |
+
```python
|
188 |
+
>>> from transformers import Kosmos2_5VisionConfig, Kosmos2_5VisionModel
|
189 |
+
|
190 |
+
>>> # Initializing a Kosmos2_5VisionConfig with microsoft/kosmos-2.5 style configuration
|
191 |
+
>>> configuration = Kosmos2_5VisionConfig()
|
192 |
+
|
193 |
+
>>> # Initializing a Kosmos2_5VisionModel (with random weights) from the microsoft/kosmos-2.5 style configuration
|
194 |
+
>>> model = Kosmos2_5VisionModel(configuration)
|
195 |
+
|
196 |
+
>>> # Accessing the model configuration
|
197 |
+
>>> configuration = model.config
|
198 |
+
```"""
|
199 |
+
|
200 |
+
model_type = "kosmos_2_5_vision_model"
|
201 |
+
|
202 |
+
def __init__(
|
203 |
+
self,
|
204 |
+
hidden_size=1536,
|
205 |
+
patch_embed_hidden_size=768,
|
206 |
+
d_ff=3968,
|
207 |
+
d_kv=64,
|
208 |
+
num_hidden_layers=18,
|
209 |
+
num_attention_heads=24,
|
210 |
+
dense_act_fn="gelu_new",
|
211 |
+
layer_norm_eps=1e-6,
|
212 |
+
dropout_rate=0.0,
|
213 |
+
attention_dropout=0.0,
|
214 |
+
initializer_range=1e-10,
|
215 |
+
initializer_factor=1.0,
|
216 |
+
seq_len=4096,
|
217 |
+
**kwargs,
|
218 |
+
):
|
219 |
+
super().__init__(**kwargs)
|
220 |
+
|
221 |
+
self.hidden_size = hidden_size
|
222 |
+
self.patch_embed_hidden_size = patch_embed_hidden_size
|
223 |
+
self.d_ff = d_ff
|
224 |
+
self.dropout_rate = dropout_rate
|
225 |
+
self.num_hidden_layers = num_hidden_layers
|
226 |
+
self.num_attention_heads = num_attention_heads
|
227 |
+
self.initializer_range = initializer_range
|
228 |
+
self.initializer_factor = initializer_factor
|
229 |
+
self.attention_dropout = attention_dropout
|
230 |
+
self.layer_norm_eps = layer_norm_eps
|
231 |
+
self.dense_act_fn = dense_act_fn
|
232 |
+
self.seq_len = seq_len
|
233 |
+
self.d_kv = d_kv
|
234 |
+
|
235 |
+
@classmethod
|
236 |
+
def from_pretrained(
|
237 |
+
cls, pretrainehidden_size_name_or_path: Union[str, os.PathLike], **kwargs
|
238 |
+
) -> "PretrainedConfig":
|
239 |
+
cls._set_token_in_kwargs(kwargs)
|
240 |
+
|
241 |
+
config_dict, kwargs = cls.get_config_dict(pretrainehidden_size_name_or_path, **kwargs)
|
242 |
+
|
243 |
+
# get the vision config dict if we are loading from Kosmos2_5Config
|
244 |
+
if config_dict.get("model_type") == "Kosmos2_5":
|
245 |
+
config_dict = config_dict["vision_config"]
|
246 |
+
|
247 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
248 |
+
logger.warning(
|
249 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
250 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
251 |
+
)
|
252 |
+
|
253 |
+
return cls.from_dict(config_dict, **kwargs)
|
254 |
+
|
255 |
+
|
256 |
+
class Kosmos2_5Config(PretrainedConfig):
|
257 |
+
r"""
|
258 |
+
This is the configuration class to store the configuration of a [`Kosmos2_5Model`]. It is used to instantiate a
|
259 |
+
KOSMOS-2.5 model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
260 |
+
with the defaults will yield a similar configuration to that of the KOSMOS-2.5
|
261 |
+
[microsoft/KOSMOS-2.5-patch14-224](https://huggingface.co/microsoft/KOSMOS-2.5-patch14-224) architecture.
|
262 |
+
|
263 |
+
Args:
|
264 |
+
text_config (`dict`, *optional*):
|
265 |
+
Dictionary of configuration options used to initialize [`Kosmos2_5TextConfig`].
|
266 |
+
vision_config (`dict`, *optional*):
|
267 |
+
Dictionary of configuration options used to initialize [`Kosmos2_5VisionConfig`].
|
268 |
+
latent_query_num (`int`, *optional*, defaults to 2048):
|
269 |
+
The number of latent query tokens that represent the image features used in the text decoder component.
|
270 |
+
kwargs (*optional*):
|
271 |
+
Dictionary of keyword arguments.
|
272 |
+
|
273 |
+
Example:
|
274 |
+
|
275 |
+
```python
|
276 |
+
>>> from .. import Kosmos2_5Config, Kosmos2_5Model
|
277 |
+
|
278 |
+
>>> # Initializing a KOSMOS-2.5 KOSMOS-2.5-patch14-224 style configuration
|
279 |
+
>>> configuration = Kosmos2_5Config()
|
280 |
+
|
281 |
+
>>> # Initializing a model (with random weights) from the KOSMOS-2.5-patch14-224 style configuration
|
282 |
+
>>> model = Kosmos2_5Model(configuration)
|
283 |
+
|
284 |
+
>>> # Accessing the model configuration
|
285 |
+
>>> configuration = model.config
|
286 |
+
```"""
|
287 |
+
|
288 |
+
model_type = "kosmos-2.5"
|
289 |
+
is_composition = True
|
290 |
+
|
291 |
+
def __init__(
|
292 |
+
self,
|
293 |
+
text_config=None,
|
294 |
+
vision_config=None,
|
295 |
+
latent_query_num=2048,
|
296 |
+
**kwargs,
|
297 |
+
):
|
298 |
+
super().__init__(**kwargs)
|
299 |
+
if text_config is None:
|
300 |
+
text_config = {}
|
301 |
+
logger.info("text_config is None. Initializing the Kosmos2_5TextConfig with default values.")
|
302 |
+
if vision_config is None:
|
303 |
+
vision_config = {}
|
304 |
+
logger.info("vision_config is None. Initializing the Kosmos2_5VisionConfig with default values.")
|
305 |
+
|
306 |
+
self.text_config = Kosmos2_5TextConfig(**text_config)
|
307 |
+
self.vision_config = Kosmos2_5VisionConfig(**vision_config)
|
308 |
+
|
309 |
+
self.latent_query_num = latent_query_num
|
310 |
+
|
311 |
+
@classmethod
|
312 |
+
def from_text_vision_configs(
|
313 |
+
cls,
|
314 |
+
text_config: Kosmos2_5TextConfig,
|
315 |
+
vision_config: Kosmos2_5VisionConfig,
|
316 |
+
**kwargs,
|
317 |
+
):
|
318 |
+
r"""
|
319 |
+
Instantiate a [`Pix2StructConfig`] (or a derived class) from pix2struct text model configuration and pix2struct
|
320 |
+
vision model configuration.
|
321 |
+
|
322 |
+
Returns:
|
323 |
+
[`Pix2StructConfig`]: An instance of a configuration object
|
324 |
+
"""
|
325 |
+
|
326 |
+
return cls(
|
327 |
+
text_config=text_config.to_dict(),
|
328 |
+
vision_config=vision_config.to_dict(),
|
329 |
+
**kwargs,
|
330 |
+
)
|
image_processing_kosmos2_5.py
ADDED
@@ -0,0 +1,341 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Image processor class for Kosmos2_5."""
|
16 |
+
|
17 |
+
import math
|
18 |
+
from typing import Dict, Optional, Union
|
19 |
+
|
20 |
+
import numpy as np
|
21 |
+
|
22 |
+
from transformers.image_processing_utils import BaseImageProcessor, BatchFeature
|
23 |
+
from transformers.image_transforms import (
|
24 |
+
convert_to_rgb,
|
25 |
+
normalize,
|
26 |
+
to_channel_dimension_format,
|
27 |
+
)
|
28 |
+
from transformers.image_utils import (
|
29 |
+
ChannelDimension,
|
30 |
+
ImageInput,
|
31 |
+
get_image_size,
|
32 |
+
infer_channel_dimension_format,
|
33 |
+
make_list_of_images,
|
34 |
+
to_numpy_array,
|
35 |
+
valid_images,
|
36 |
+
)
|
37 |
+
from transformers.utils import TensorType, is_torch_available, logging
|
38 |
+
from transformers.utils.import_utils import requires_backends
|
39 |
+
|
40 |
+
|
41 |
+
if is_torch_available():
|
42 |
+
import torch
|
43 |
+
|
44 |
+
logger = logging.get_logger(__name__)
|
45 |
+
DEFAULT_FONT_PATH = "ybelkada/fonts"
|
46 |
+
|
47 |
+
|
48 |
+
# adapted from: https://discuss.pytorch.org/t/tf-image-extract-patches-in-pytorch/171409/2
|
49 |
+
def torch_extract_patches(image_tensor, patch_height, patch_width):
|
50 |
+
"""
|
51 |
+
Utiliy function to extract patches from a given image tensor. Returns a tensor of shape (1, `patch_height`,
|
52 |
+
`patch_width`, `num_channels`x `patch_height` x `patch_width`)
|
53 |
+
|
54 |
+
Args:
|
55 |
+
image_tensor (torch.Tensor):
|
56 |
+
The image tensor to extract patches from.
|
57 |
+
patch_height (int):
|
58 |
+
The height of the patches to extract.
|
59 |
+
patch_width (int):
|
60 |
+
The width of the patches to extract.
|
61 |
+
"""
|
62 |
+
requires_backends(torch_extract_patches, ["torch"])
|
63 |
+
|
64 |
+
image_tensor = image_tensor.unsqueeze(0)
|
65 |
+
patches = torch.nn.functional.unfold(image_tensor, (patch_height, patch_width), stride=(patch_height, patch_width))
|
66 |
+
patches = patches.reshape(image_tensor.size(0), image_tensor.size(1), patch_height, patch_width, -1)
|
67 |
+
patches = patches.permute(0, 4, 2, 3, 1).reshape(
|
68 |
+
image_tensor.size(2) // patch_height,
|
69 |
+
image_tensor.size(3) // patch_width,
|
70 |
+
image_tensor.size(1) * patch_height * patch_width,
|
71 |
+
)
|
72 |
+
return patches.unsqueeze(0)
|
73 |
+
|
74 |
+
|
75 |
+
class Kosmos2_5ImageProcessor(BaseImageProcessor):
|
76 |
+
r"""
|
77 |
+
Constructs a Kosmos2_5 image processor.
|
78 |
+
|
79 |
+
Args:
|
80 |
+
do_convert_rgb (`bool`, *optional*, defaults to `True`):
|
81 |
+
Whether to convert the image to RGB.
|
82 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
83 |
+
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
|
84 |
+
method. According to Kosmos2_5 paper and code, the image is normalized with its own mean and standard
|
85 |
+
deviation.
|
86 |
+
patch_size (`Dict[str, int]`, *optional*, defaults to `{"height": 16, "width": 16}`):
|
87 |
+
The patch size to use for the image. According to Kosmos2_5 paper and code, the patch size is 16x16.
|
88 |
+
max_patches (`int`, *optional*, defaults to 4096):
|
89 |
+
The maximum number of patches to extract from the image as per the [Kosmos2_5
|
90 |
+
paper](https://arxiv.org/pdf/2309.11419).
|
91 |
+
"""
|
92 |
+
|
93 |
+
model_input_names = ["flattened_patches"]
|
94 |
+
|
95 |
+
def __init__(
|
96 |
+
self,
|
97 |
+
do_convert_rgb: bool = True,
|
98 |
+
do_normalize: bool = True,
|
99 |
+
patch_size: Dict[str, int] = None,
|
100 |
+
max_patches: int = 4096,
|
101 |
+
**kwargs,
|
102 |
+
) -> None:
|
103 |
+
super().__init__(**kwargs)
|
104 |
+
self.patch_size = patch_size if patch_size is not None else {"height": 16, "width": 16}
|
105 |
+
self.do_normalize = do_normalize
|
106 |
+
self.do_convert_rgb = do_convert_rgb
|
107 |
+
self.max_patches = max_patches
|
108 |
+
|
109 |
+
def extract_flattened_patches(
|
110 |
+
self,
|
111 |
+
image: np.ndarray,
|
112 |
+
max_patches: int,
|
113 |
+
patch_size: dict,
|
114 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
115 |
+
**kwargs,
|
116 |
+
) -> np.ndarray:
|
117 |
+
"""
|
118 |
+
Extract flattened patches from an image.
|
119 |
+
|
120 |
+
Args:
|
121 |
+
image (`np.ndarray`):
|
122 |
+
Image to extract flattened patches from.
|
123 |
+
max_patches (`int`):
|
124 |
+
Maximum number of patches to extract.
|
125 |
+
patch_size (`dict`):
|
126 |
+
Dictionary containing the patch height and width.
|
127 |
+
|
128 |
+
Returns:
|
129 |
+
result (`np.ndarray`):
|
130 |
+
A sequence of `max_patches` flattened patches.
|
131 |
+
"""
|
132 |
+
requires_backends(self.extract_flattened_patches, "torch")
|
133 |
+
|
134 |
+
# convert to torch
|
135 |
+
image = to_channel_dimension_format(image, ChannelDimension.FIRST, input_data_format)
|
136 |
+
image = torch.from_numpy(image)
|
137 |
+
|
138 |
+
patch_height, patch_width = patch_size["height"], patch_size["width"]
|
139 |
+
image_height, image_width = get_image_size(image, ChannelDimension.FIRST)
|
140 |
+
|
141 |
+
# maximize scale s.t.
|
142 |
+
scale = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width))
|
143 |
+
num_feasible_rows = max(min(math.floor(scale * image_height / patch_height), max_patches), 1)
|
144 |
+
num_feasible_cols = max(min(math.floor(scale * image_width / patch_width), max_patches), 1)
|
145 |
+
resized_height = max(num_feasible_rows * patch_height, 1)
|
146 |
+
resized_width = max(num_feasible_cols * patch_width, 1)
|
147 |
+
|
148 |
+
image = torch.nn.functional.interpolate(
|
149 |
+
image.unsqueeze(0),
|
150 |
+
size=(resized_height, resized_width),
|
151 |
+
mode="bilinear",
|
152 |
+
align_corners=False,
|
153 |
+
antialias=True,
|
154 |
+
).squeeze(0)
|
155 |
+
|
156 |
+
# [1, rows, columns, patch_height * patch_width * image_channels]
|
157 |
+
patches = torch_extract_patches(image, patch_height, patch_width)
|
158 |
+
|
159 |
+
patches_shape = patches.shape
|
160 |
+
rows = patches_shape[1]
|
161 |
+
columns = patches_shape[2]
|
162 |
+
depth = patches_shape[3]
|
163 |
+
|
164 |
+
# [rows * columns, patch_height * patch_width * image_channels]
|
165 |
+
patches = patches.reshape([rows * columns, depth])
|
166 |
+
|
167 |
+
# [rows * columns, 1]
|
168 |
+
row_ids = torch.arange(rows).reshape([rows, 1]).repeat(1, columns).reshape([rows * columns, 1])
|
169 |
+
col_ids = torch.arange(columns).reshape([1, columns]).repeat(rows, 1).reshape([rows * columns, 1])
|
170 |
+
|
171 |
+
# Offset by 1 so the ids do not contain zeros, which represent padding.
|
172 |
+
row_ids += 1
|
173 |
+
col_ids += 1
|
174 |
+
|
175 |
+
# Prepare additional patch features.
|
176 |
+
# [rows * columns, 1]
|
177 |
+
row_ids = row_ids.to(torch.float32)
|
178 |
+
col_ids = col_ids.to(torch.float32)
|
179 |
+
|
180 |
+
# [rows * columns, 2 + patch_height * patch_width * image_channels]
|
181 |
+
result = torch.cat([row_ids, col_ids, patches], -1)
|
182 |
+
|
183 |
+
# [max_patches, 2 + patch_height * patch_width * image_channels]
|
184 |
+
result = torch.nn.functional.pad(result, [0, 0, 0, max_patches - (rows * columns)]).float()
|
185 |
+
|
186 |
+
result = to_numpy_array(result)
|
187 |
+
|
188 |
+
return result, resized_width, resized_height, rows, columns
|
189 |
+
|
190 |
+
def normalize(
|
191 |
+
self,
|
192 |
+
image: np.ndarray,
|
193 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
194 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
195 |
+
**kwargs,
|
196 |
+
) -> np.ndarray:
|
197 |
+
"""
|
198 |
+
Normalize an image. image = (image - image_mean) / image_std.
|
199 |
+
|
200 |
+
The image std is to mimic the tensorflow implementation of the `per_image_standardization`:
|
201 |
+
https://www.tensorflow.org/api_docs/python/tf/image/per_image_standardization
|
202 |
+
|
203 |
+
Args:
|
204 |
+
image (`np.ndarray`):
|
205 |
+
Image to normalize.
|
206 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
207 |
+
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
208 |
+
image is used.
|
209 |
+
input_data_format (`str` or `ChannelDimension`, *optional*):
|
210 |
+
The channel dimension format of the input image. If not provided, it will be inferred.
|
211 |
+
"""
|
212 |
+
if image.dtype == np.uint8:
|
213 |
+
image = image.astype(np.float32)
|
214 |
+
|
215 |
+
# take mean across the whole `image`
|
216 |
+
mean = np.mean(image)
|
217 |
+
std = np.std(image)
|
218 |
+
adjusted_stddev = max(std, 1.0 / math.sqrt(np.prod(image.shape)))
|
219 |
+
|
220 |
+
return normalize(
|
221 |
+
image,
|
222 |
+
mean=mean,
|
223 |
+
std=adjusted_stddev,
|
224 |
+
data_format=data_format,
|
225 |
+
input_data_format=input_data_format,
|
226 |
+
**kwargs,
|
227 |
+
)
|
228 |
+
|
229 |
+
def preprocess(
|
230 |
+
self,
|
231 |
+
images: ImageInput,
|
232 |
+
do_convert_rgb: bool = None,
|
233 |
+
do_normalize: Optional[bool] = None,
|
234 |
+
max_patches: Optional[int] = None,
|
235 |
+
patch_size: Optional[Dict[str, int]] = None,
|
236 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
237 |
+
data_format: ChannelDimension = ChannelDimension.FIRST,
|
238 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
239 |
+
**kwargs,
|
240 |
+
) -> ImageInput:
|
241 |
+
"""
|
242 |
+
Preprocess an image or batch of images. The processor first computes the maximum possible number of
|
243 |
+
aspect-ratio preserving patches of size `patch_size` that can be extracted from the image. It then pads the
|
244 |
+
image with zeros to make the image respect the constraint of `max_patches`. Before extracting the patches the
|
245 |
+
images are standardized following the tensorflow implementation of `per_image_standardization`
|
246 |
+
(https://www.tensorflow.org/api_docs/python/tf/image/per_image_standardization).
|
247 |
+
|
248 |
+
|
249 |
+
Args:
|
250 |
+
images (`ImageInput`):
|
251 |
+
Image to preprocess. Expects a single or batch of images.
|
252 |
+
do_convert_rgb (`bool`, *optional*, defaults to `self.do_convert_rgb`):
|
253 |
+
Whether to convert the image to RGB.
|
254 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
255 |
+
Whether to normalize the image.
|
256 |
+
max_patches (`int`, *optional*, defaults to `self.max_patches`):
|
257 |
+
Maximum number of patches to extract.
|
258 |
+
patch_size (`dict`, *optional*, defaults to `self.patch_size`):
|
259 |
+
Dictionary containing the patch height and width.
|
260 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
261 |
+
The type of tensors to return. Can be one of:
|
262 |
+
- Unset: Return a list of `np.ndarray`.
|
263 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
264 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
265 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
266 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
267 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
268 |
+
The channel dimension format for the output image. Can be one of:
|
269 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
270 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
271 |
+
- Unset: Use the channel dimension format of the input image.
|
272 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
273 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
274 |
+
from the input image. Can be one of:
|
275 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
276 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
277 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
278 |
+
"""
|
279 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
280 |
+
do_convert_rgb = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
|
281 |
+
patch_size = patch_size if patch_size is not None else self.patch_size
|
282 |
+
max_patches = max_patches if max_patches is not None else self.max_patches
|
283 |
+
|
284 |
+
if kwargs.get("data_format", None) is not None:
|
285 |
+
raise ValueError("data_format is not an accepted input as the outputs are ")
|
286 |
+
|
287 |
+
images = make_list_of_images(images)
|
288 |
+
|
289 |
+
if not valid_images(images):
|
290 |
+
raise ValueError(
|
291 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
292 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
293 |
+
)
|
294 |
+
|
295 |
+
# PIL RGBA images are converted to RGB
|
296 |
+
if do_convert_rgb:
|
297 |
+
images = [convert_to_rgb(image) for image in images]
|
298 |
+
|
299 |
+
# All transformations expect numpy arrays.
|
300 |
+
images = [to_numpy_array(image) for image in images]
|
301 |
+
|
302 |
+
if input_data_format is None:
|
303 |
+
# We assume that all images have the same channel dimension format.
|
304 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
305 |
+
|
306 |
+
if do_normalize:
|
307 |
+
images = [self.normalize(image=image, input_data_format=input_data_format) for image in images]
|
308 |
+
|
309 |
+
# convert to torch tensor and permute
|
310 |
+
images = [
|
311 |
+
self.extract_flattened_patches(
|
312 |
+
image=image,
|
313 |
+
max_patches=max_patches,
|
314 |
+
patch_size=patch_size,
|
315 |
+
input_data_format=input_data_format,
|
316 |
+
)
|
317 |
+
for image in images
|
318 |
+
]
|
319 |
+
|
320 |
+
width = [image[1] for image in images]
|
321 |
+
height = [image[2] for image in images]
|
322 |
+
rows = [image[3] for image in images]
|
323 |
+
cols = [image[4] for image in images]
|
324 |
+
images = [image[0] for image in images]
|
325 |
+
|
326 |
+
# create attention mask in numpy
|
327 |
+
attention_masks = [(image.sum(axis=-1) != 0).astype(np.float32) for image in images]
|
328 |
+
|
329 |
+
encoded_outputs = BatchFeature(
|
330 |
+
data={
|
331 |
+
"flattened_patches": images,
|
332 |
+
"attention_mask": attention_masks,
|
333 |
+
"width": width,
|
334 |
+
"height": height,
|
335 |
+
"rows": rows,
|
336 |
+
"cols": cols,
|
337 |
+
},
|
338 |
+
tensor_type=return_tensors,
|
339 |
+
)
|
340 |
+
|
341 |
+
return encoded_outputs
|
modeling_kosmos2_5.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
processing_kosmos2_5.py
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2024 Microsoft Research and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
Processor class for Kosmos2_5.
|
17 |
+
"""
|
18 |
+
|
19 |
+
from typing import List, Optional, Union
|
20 |
+
|
21 |
+
from transformers.image_processing_utils import BatchFeature
|
22 |
+
from transformers.processing_utils import ProcessorMixin
|
23 |
+
from transformers.tokenization_utils_base import PaddingStrategy, TextInput, TruncationStrategy
|
24 |
+
from transformers.utils import TensorType, is_torch_available
|
25 |
+
|
26 |
+
|
27 |
+
if is_torch_available():
|
28 |
+
import torch
|
29 |
+
|
30 |
+
|
31 |
+
class Kosmos2_5Processor(ProcessorMixin):
|
32 |
+
r"""
|
33 |
+
Constructs a Kosmos2_5 processor which wraps a BERT tokenizer and Kosmos2_5 image processor into a single
|
34 |
+
processor.
|
35 |
+
|
36 |
+
[`Kosmos2_5Processor`] offers all the functionalities of [`Kosmos2_5ImageProcessor`] and [`T5TokenizerFast`]. See
|
37 |
+
the docstring of [`~Kosmos2_5Processor.__call__`] and [`~Kosmos2_5Processor.decode`] for more information.
|
38 |
+
|
39 |
+
Args:
|
40 |
+
image_processor (`Kosmos2_5ImageProcessor`):
|
41 |
+
An instance of [`Kosmos2_5ImageProcessor`]. The image processor is a required input.
|
42 |
+
tokenizer (Union[`T5TokenizerFast`, `T5Tokenizer`]):
|
43 |
+
An instance of ['T5TokenizerFast`] or ['T5Tokenizer`]. The tokenizer is a required input.
|
44 |
+
"""
|
45 |
+
|
46 |
+
attributes = ["image_processor", "tokenizer"]
|
47 |
+
image_processor_class = "Kosmos2_5ImageProcessor"
|
48 |
+
tokenizer_class = "PreTrainedTokenizerFast"
|
49 |
+
|
50 |
+
def __init__(self, image_processor, tokenizer):
|
51 |
+
tokenizer.return_token_type_ids = False
|
52 |
+
super().__init__(image_processor, tokenizer)
|
53 |
+
|
54 |
+
def __call__(
|
55 |
+
self,
|
56 |
+
images=None,
|
57 |
+
text: Union[TextInput, List[TextInput]] = None,
|
58 |
+
add_special_tokens: bool = True,
|
59 |
+
padding: Union[bool, str, PaddingStrategy] = True,
|
60 |
+
truncation: Union[bool, str, TruncationStrategy] = True,
|
61 |
+
max_length: Optional[int] = None,
|
62 |
+
max_patches: Optional[int] = 4096,
|
63 |
+
stride: int = 0,
|
64 |
+
pad_to_multiple_of: Optional[int] = None,
|
65 |
+
return_attention_mask: Optional[bool] = None,
|
66 |
+
return_tensors: Optional[Union[str, TensorType]] = "pt",
|
67 |
+
**kwargs,
|
68 |
+
) -> BatchFeature:
|
69 |
+
"""
|
70 |
+
This method uses [`Kosmos2_5ImageProcessor.preprocess`] method to prepare image(s) for the model, and
|
71 |
+
[`PreTrainedTokenizerFast.__call__`] to prepare text for the model.
|
72 |
+
|
73 |
+
Please refer to the docstring of the above two methods for more information.
|
74 |
+
|
75 |
+
The rest of this documentation shows the arguments specific to `Kosmos2_5Processor`.
|
76 |
+
"""
|
77 |
+
if images is None and text is None:
|
78 |
+
raise ValueError("You have to specify either images or text.")
|
79 |
+
|
80 |
+
encoding = BatchFeature()
|
81 |
+
|
82 |
+
if images is not None:
|
83 |
+
image_encoding = self.image_processor(
|
84 |
+
images, return_tensors=return_tensors, max_patches=max_patches, **kwargs
|
85 |
+
)
|
86 |
+
image_encoding.pop("rows")
|
87 |
+
image_encoding.pop("cols")
|
88 |
+
encoding.update(image_encoding)
|
89 |
+
|
90 |
+
if text is not None:
|
91 |
+
# use updates or pop
|
92 |
+
input = self.tokenizer(
|
93 |
+
text,
|
94 |
+
add_special_tokens=add_special_tokens,
|
95 |
+
padding=padding,
|
96 |
+
truncation=truncation,
|
97 |
+
max_length=max_length,
|
98 |
+
stride=stride,
|
99 |
+
pad_to_multiple_of=pad_to_multiple_of,
|
100 |
+
return_attention_mask=return_attention_mask,
|
101 |
+
return_tensors="pt",
|
102 |
+
)
|
103 |
+
|
104 |
+
batch_size, seq_len = input.input_ids.shape
|
105 |
+
additional_tokens = [0, 100283] + [0] * 2048 + [100284]
|
106 |
+
additional_tokens_tensor = torch.tensor(additional_tokens).unsqueeze(0).repeat(batch_size, 1)
|
107 |
+
input_ids = torch.cat([additional_tokens_tensor, input.input_ids], dim=1)
|
108 |
+
|
109 |
+
image_embeds_position_mask = [0, -1] + [1] * 2048 + [-1] + [0] * seq_len
|
110 |
+
image_embeds_position_mask = (
|
111 |
+
torch.LongTensor(image_embeds_position_mask).unsqueeze(0).repeat(batch_size, 1)
|
112 |
+
)
|
113 |
+
|
114 |
+
added_attention_mask = [1, 1] + [1] * 2048 + [1]
|
115 |
+
added_attention_mask_tensor = torch.tensor(added_attention_mask).unsqueeze(0).repeat(batch_size, 1)
|
116 |
+
attention_mask = torch.cat([added_attention_mask_tensor, input.attention_mask], dim=1)
|
117 |
+
encoding.update(
|
118 |
+
{
|
119 |
+
"input_ids": input_ids,
|
120 |
+
"attention_mask": attention_mask,
|
121 |
+
"image_embeds_position_mask": image_embeds_position_mask,
|
122 |
+
}
|
123 |
+
)
|
124 |
+
|
125 |
+
return encoding
|
126 |
+
|
127 |
+
def batch_decode(self, *args, **kwargs):
|
128 |
+
"""
|
129 |
+
This method forwards all its arguments to Kosmos2_5TokenizerFast's [`~PreTrainedTokenizer.batch_decode`].
|
130 |
+
Please refer to the docstring of this method for more information.
|
131 |
+
"""
|
132 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
133 |
+
|
134 |
+
def decode(self, *args, **kwargs):
|
135 |
+
"""
|
136 |
+
This method forwards all its arguments to Kosmos2_5TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please
|
137 |
+
refer to the docstring of this method for more information.
|
138 |
+
"""
|
139 |
+
return self.tokenizer.decode(*args, **kwargs)
|
140 |
+
|
141 |
+
@property
|
142 |
+
def model_input_names(self):
|
143 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
144 |
+
image_processor_input_names = self.image_processor.model_input_names
|
145 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|