File size: 1,141 Bytes
cf630fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
---
tags:
- autotrain
- text-classification
language:
- en
widget:
- text: "I love AutoTrain 🤗"
datasets:
- kkmkorea/autotrain-data-patentmatch
co2_eq_emissions:
  emissions: 54.78280971868554
---

# Model Trained Using AutoTrain

- Problem type: Binary Classification
- Model ID: 3547495705
- CO2 Emissions (in grams): 54.7828

## Validation Metrics

- Loss: 0.226
- Accuracy: 0.948
- Precision: 0.945
- Recall: 0.952
- AUC: 0.986
- F1: 0.948

## Usage

You can use cURL to access this model:

```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/kkmkorea/autotrain-patentmatch-3547495705
```

Or Python API:

```
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model = AutoModelForSequenceClassification.from_pretrained("kkmkorea/autotrain-patentmatch-3547495705", use_auth_token=True)

tokenizer = AutoTokenizer.from_pretrained("kkmkorea/autotrain-patentmatch-3547495705", use_auth_token=True)

inputs = tokenizer("I love AutoTrain", return_tensors="pt")

outputs = model(**inputs)
```