---
library_name: setfit
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
metrics:
- accuracy
widget:
- text: A gentle nudge to complete the healthcare webinar questionnaire sent last
week.
- text: Sudden severe chest pain, suspecting a cardiac emergency.
- text: Annual physical examination due in Tuesday, March 05. Please book an appointment.
- text: Please confirm your attendance at the lifestyle next month.
- text: Could you verify your emergency contact details in our records?
pipeline_tag: text-classification
inference: true
base_model: sentence-transformers/paraphrase-mpnet-base-v2
model-index:
- name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.8433333333333334
name: Accuracy
---
# SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 3 classes
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 |
- 'Rapid onset of confusion and weakness, urgent evaluation needed.'
- 'Unconscious patient found, immediate medical response required.'
- 'Urgent: Suspected heart attack, immediate medical attention required.'
|
| 1 | - 'Reminder: Your dental check-up is scheduled for Monday, February 05.'
- 'Reminder: Your dental check-up is scheduled for Saturday, February 24.'
- 'Nutritionist appointment reminder for Sunday, January 21.'
|
| 0 | - 'Could you verify your lifestyle contact details in our records?'
- 'Kindly update your emergency contact list at your earliest convenience.'
- 'We request you to update your wellness information for our records.'
|
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.8433 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("konsman/setfit-messages-generated")
# Run inference
preds = model("Sudden severe chest pain, suspecting a cardiac emergency.")
```
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 7 | 10.125 | 12 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0 | 16 |
| 1 | 16 |
| 2 | 16 |
### Training Hyperparameters
- batch_size: (8, 8)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2.2041595048800003e-05, 2.2041595048800003e-05)
- head_learning_rate: 2.2041595048800003e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:------:|:----:|:-------------:|:---------------:|
| 0.0021 | 1 | 0.2762 | - |
| 0.1042 | 50 | 0.058 | - |
| 0.2083 | 100 | 0.0013 | - |
| 0.3125 | 150 | 0.0002 | - |
| 0.4167 | 200 | 0.0004 | - |
| 0.5208 | 250 | 0.0003 | - |
| 0.625 | 300 | 0.0003 | - |
| 0.7292 | 350 | 0.0002 | - |
| 0.8333 | 400 | 0.0003 | - |
| 0.9375 | 450 | 0.0002 | - |
| 1.0417 | 500 | 0.0002 | - |
| 1.1458 | 550 | 0.0002 | - |
| 1.25 | 600 | 0.0001 | - |
| 1.3542 | 650 | 0.0001 | - |
| 1.4583 | 700 | 0.0002 | - |
| 1.5625 | 750 | 0.0002 | - |
| 1.6667 | 800 | 0.0001 | - |
| 1.7708 | 850 | 0.0002 | - |
| 1.875 | 900 | 0.0002 | - |
| 1.9792 | 950 | 0.0002 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.0.2
- Sentence Transformers: 2.2.2
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu121
- Datasets: 2.16.1
- Tokenizers: 0.15.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```