konsman commited on
Commit
c1493c6
1 Parent(s): 7f70143

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,234 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ datasets:
9
+ - konsman/setfit-messages-updated-influence-level
10
+ metrics:
11
+ - accuracy
12
+ widget:
13
+ - text: The influence level of Staying hydrated is especially important for older
14
+ adults to prevent dehydration.
15
+ - text: The influence level of Regularly updating emergency contact information is
16
+ important for the elderly.
17
+ - text: 'The influence level of Early detection saves lives. Support breast cancer
18
+ awareness month. Wear pink, spread awareness. Stand with us this breast cancer
19
+ awareness month. '
20
+ - text: 'The influence level of Mental Health Day is approaching. Join our online
21
+ discussion on well-being. Prioritize mental health. Participate in our online
22
+ discussion this Mental Health Day. '
23
+ - text: The influence level of Regular kidney function tests are important for those
24
+ with high blood pressure.
25
+ pipeline_tag: text-classification
26
+ inference: true
27
+ base_model: sentence-transformers/all-mpnet-base-v2
28
+ model-index:
29
+ - name: SetFit with sentence-transformers/all-mpnet-base-v2
30
+ results:
31
+ - task:
32
+ type: text-classification
33
+ name: Text Classification
34
+ dataset:
35
+ name: konsman/setfit-messages-updated-influence-level
36
+ type: konsman/setfit-messages-updated-influence-level
37
+ split: test
38
+ metrics:
39
+ - type: accuracy
40
+ value: 0.47368421052631576
41
+ name: Accuracy
42
+ ---
43
+
44
+ # SetFit with sentence-transformers/all-mpnet-base-v2
45
+
46
+ This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [konsman/setfit-messages-updated-influence-level](https://huggingface.co/datasets/konsman/setfit-messages-updated-influence-level) dataset that can be used for Text Classification. This SetFit model uses [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
47
+
48
+ The model has been trained using an efficient few-shot learning technique that involves:
49
+
50
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
51
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
52
+
53
+ ## Model Details
54
+
55
+ ### Model Description
56
+ - **Model Type:** SetFit
57
+ - **Sentence Transformer body:** [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2)
58
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
59
+ - **Maximum Sequence Length:** 384 tokens
60
+ - **Number of Classes:** 4 classes
61
+ - **Training Dataset:** [konsman/setfit-messages-updated-influence-level](https://huggingface.co/datasets/konsman/setfit-messages-updated-influence-level)
62
+ <!-- - **Language:** Unknown -->
63
+ <!-- - **License:** Unknown -->
64
+
65
+ ### Model Sources
66
+
67
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
68
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
69
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
70
+
71
+ ### Model Labels
72
+ | Label | Examples |
73
+ |:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
74
+ | 0 | <ul><li>'The influence level of Understanding the effects of aging on the body is key for caregivers.'</li><li>'The influence level of Regular check-ups are key to maintaining good health.'</li><li>'The influence level of Balanced nutrition is key for maintaining health in old age.'</li></ul> |
75
+ | 1 | <ul><li>"The influence level of Time for your 3pm medication! Please take as directed. Friendly reminder: It's time for your 3pm medication. Ensure to take it as prescribed."</li><li>'The influence level of Regular bladder function tests are important for elderly individuals.'</li><li>'The influence level of How was your telehealth session? Share your feedback. Help us improve. Provide feedback on your recent telehealth appointment. '</li></ul> |
76
+ | 2 | <ul><li>"The influence level of A support group meeting is scheduled for tomorrow at 5pm. It's a great opportunity to share and learn. Connect with others in our support group meeting tomorrow. See you at 5pm!"</li><li>'The influence level of Safety first! Please update your emergency contact details in our system. Ensure swift help when needed. Update your emergency contacts in our app. '</li><li>'The influence level of Regularly discussing health concerns with doctors is important for the elderly.'</li></ul> |
77
+ | 3 | <ul><li>'The influence level of Understanding the role of dietary supplements in elderly health is important.'</li><li>'The influence level of Proper medication management is essential for effective treatment.'</li><li>"The influence level of Your child's health is paramount. Reminder for the pediatrician appointment tomorrow. Ensure the best for your child. Don't miss the pediatrician appointment set for tomorrow. "</li></ul> |
78
+
79
+ ## Evaluation
80
+
81
+ ### Metrics
82
+ | Label | Accuracy |
83
+ |:--------|:---------|
84
+ | **all** | 0.4737 |
85
+
86
+ ## Uses
87
+
88
+ ### Direct Use for Inference
89
+
90
+ First install the SetFit library:
91
+
92
+ ```bash
93
+ pip install setfit
94
+ ```
95
+
96
+ Then you can load this model and run inference.
97
+
98
+ ```python
99
+ from setfit import SetFitModel
100
+
101
+ # Download from the 🤗 Hub
102
+ model = SetFitModel.from_pretrained("konsman/setfit-messages-label-v2")
103
+ # Run inference
104
+ preds = model("The influence level of Regularly updating emergency contact information is important for the elderly.")
105
+ ```
106
+
107
+ <!--
108
+ ### Downstream Use
109
+
110
+ *List how someone could finetune this model on their own dataset.*
111
+ -->
112
+
113
+ <!--
114
+ ### Out-of-Scope Use
115
+
116
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
117
+ -->
118
+
119
+ <!--
120
+ ## Bias, Risks and Limitations
121
+
122
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
123
+ -->
124
+
125
+ <!--
126
+ ### Recommendations
127
+
128
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
129
+ -->
130
+
131
+ ## Training Details
132
+
133
+ ### Training Set Metrics
134
+ | Training set | Min | Median | Max |
135
+ |:-------------|:----|:--------|:----|
136
+ | Word count | 12 | 20.8438 | 36 |
137
+
138
+ | Label | Training Sample Count |
139
+ |:------|:----------------------|
140
+ | 0 | 8 |
141
+ | 1 | 8 |
142
+ | 2 | 8 |
143
+ | 3 | 8 |
144
+
145
+ ### Training Hyperparameters
146
+ - batch_size: (8, 8)
147
+ - num_epochs: (4, 4)
148
+ - max_steps: -1
149
+ - sampling_strategy: oversampling
150
+ - num_iterations: 40
151
+ - body_learning_rate: (2.2041595048800003e-05, 2.2041595048800003e-05)
152
+ - head_learning_rate: 2.2041595048800003e-05
153
+ - loss: CosineSimilarityLoss
154
+ - distance_metric: cosine_distance
155
+ - margin: 0.25
156
+ - end_to_end: False
157
+ - use_amp: False
158
+ - warmup_proportion: 0.1
159
+ - seed: 42
160
+ - eval_max_steps: -1
161
+ - load_best_model_at_end: False
162
+
163
+ ### Training Results
164
+ | Epoch | Step | Training Loss | Validation Loss |
165
+ |:------:|:----:|:-------------:|:---------------:|
166
+ | 0.0031 | 1 | 0.1587 | - |
167
+ | 0.1562 | 50 | 0.116 | - |
168
+ | 0.3125 | 100 | 0.0918 | - |
169
+ | 0.4688 | 150 | 0.0042 | - |
170
+ | 0.625 | 200 | 0.0005 | - |
171
+ | 0.7812 | 250 | 0.0012 | - |
172
+ | 0.9375 | 300 | 0.0005 | - |
173
+ | 1.0938 | 350 | 0.0005 | - |
174
+ | 1.25 | 400 | 0.0003 | - |
175
+ | 1.4062 | 450 | 0.0002 | - |
176
+ | 1.5625 | 500 | 0.0002 | - |
177
+ | 1.7188 | 550 | 0.0001 | - |
178
+ | 1.875 | 600 | 0.0001 | - |
179
+ | 2.0312 | 650 | 0.0002 | - |
180
+ | 2.1875 | 700 | 0.0001 | - |
181
+ | 2.3438 | 750 | 0.0001 | - |
182
+ | 2.5 | 800 | 0.0001 | - |
183
+ | 2.6562 | 850 | 0.0001 | - |
184
+ | 2.8125 | 900 | 0.0001 | - |
185
+ | 2.9688 | 950 | 0.0001 | - |
186
+ | 3.125 | 1000 | 0.0002 | - |
187
+ | 3.2812 | 1050 | 0.0001 | - |
188
+ | 3.4375 | 1100 | 0.0001 | - |
189
+ | 3.5938 | 1150 | 0.0001 | - |
190
+ | 3.75 | 1200 | 0.0001 | - |
191
+ | 3.9062 | 1250 | 0.0001 | - |
192
+
193
+ ### Framework Versions
194
+ - Python: 3.10.12
195
+ - SetFit: 1.0.2
196
+ - Sentence Transformers: 2.2.2
197
+ - Transformers: 4.35.2
198
+ - PyTorch: 2.1.0+cu121
199
+ - Datasets: 2.16.1
200
+ - Tokenizers: 0.15.0
201
+
202
+ ## Citation
203
+
204
+ ### BibTeX
205
+ ```bibtex
206
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
207
+ doi = {10.48550/ARXIV.2209.11055},
208
+ url = {https://arxiv.org/abs/2209.11055},
209
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
210
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
211
+ title = {Efficient Few-Shot Learning Without Prompts},
212
+ publisher = {arXiv},
213
+ year = {2022},
214
+ copyright = {Creative Commons Attribution 4.0 International}
215
+ }
216
+ ```
217
+
218
+ <!--
219
+ ## Glossary
220
+
221
+ *Clearly define terms in order to be accessible across audiences.*
222
+ -->
223
+
224
+ <!--
225
+ ## Model Card Authors
226
+
227
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
228
+ -->
229
+
230
+ <!--
231
+ ## Model Card Contact
232
+
233
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
234
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/root/.cache/torch/sentence_transformers/sentence-transformers_all-mpnet-base-v2/",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.35.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.6.1",
5
+ "pytorch": "1.8.1"
6
+ }
7
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9b3aa7622a726a7efecc525d6aeb25fed8761aba3bd7898425392e76295e5a83
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cddeffbace193127674636f73cab72f7214dae5404d40cbd1f02c948dcc8142a
3
+ size 25463
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": true,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "max_length": 128,
59
+ "model_max_length": 512,
60
+ "pad_to_multiple_of": null,
61
+ "pad_token": "<pad>",
62
+ "pad_token_type_id": 0,
63
+ "padding_side": "right",
64
+ "sep_token": "</s>",
65
+ "stride": 0,
66
+ "strip_accents": null,
67
+ "tokenize_chinese_chars": true,
68
+ "tokenizer_class": "MPNetTokenizer",
69
+ "truncation_side": "right",
70
+ "truncation_strategy": "longest_first",
71
+ "unk_token": "[UNK]"
72
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff