konsman commited on
Commit
969eedb
1 Parent(s): 3d33594

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false
7
+ }
README.md ADDED
@@ -0,0 +1,219 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: setfit
3
+ tags:
4
+ - setfit
5
+ - sentence-transformers
6
+ - text-classification
7
+ - generated_from_setfit_trainer
8
+ datasets:
9
+ - konsman/setfit-messages-optimized
10
+ metrics:
11
+ - f1
12
+ - accuracy
13
+ widget:
14
+ - text: Tomato sauce is acidic and causes problems with my reflux. That, in turn,
15
+ irritates the vagus nerve and may bring on arrthymia. I can't eat tomato soup
16
+ anymore. It could be a trigger for that reason.
17
+ - text: pednisone is synthetic cortisol hormone naturally produced by our adrenal
18
+ glands , a powerful anti inflamatory , it works by reducing swelling . I recommend
19
+ reading the book "adrenal fatigue - the 21st century health syndrome" , the doc
20
+ says all allergies , frequent respiratory tract infections and asthma have an
21
+ underlying cause that is adrenal fatigue..
22
+ - text: 'You may want to read about Nigella sativa. It is helpful for many conditions,
23
+ and studies have been done showing it to be beneficial at reducing inflammation
24
+ of ulcerative colitis. It is also generally good for preventing many diseases,
25
+ including cancer. Also hemorrhoids. '
26
+ - text: Sorry forgot to say that unfortunately after this problem that made me let
27
+ sports and with the anxiety meds . I am now 83 kg
28
+ - text: 6 months pregnant had an abnormal pap, doctor did a biopsy and came back as
29
+ cis what is this how serious and what's the cause? I have to have a leep after
30
+ my son comes, what does this entail? Doc not good at explaining anything
31
+ pipeline_tag: text-classification
32
+ inference: false
33
+ base_model: sentence-transformers/paraphrase-mpnet-base-v2
34
+ model-index:
35
+ - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
36
+ results:
37
+ - task:
38
+ type: text-classification
39
+ name: Text Classification
40
+ dataset:
41
+ name: konsman/setfit-messages-optimized
42
+ type: konsman/setfit-messages-optimized
43
+ split: test
44
+ metrics:
45
+ - type: f1
46
+ value: 0.6896901980700864
47
+ name: F1
48
+ - type: accuracy
49
+ value: 0.3403755868544601
50
+ name: Accuracy
51
+ ---
52
+
53
+ # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
54
+
55
+ This is a [SetFit](https://github.com/huggingface/setfit) model trained on the [konsman/setfit-messages-optimized](https://huggingface.co/datasets/konsman/setfit-messages-optimized) dataset that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A MultiOutputClassifier instance is used for classification.
56
+
57
+ The model has been trained using an efficient few-shot learning technique that involves:
58
+
59
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
60
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
61
+
62
+ ## Model Details
63
+
64
+ ### Model Description
65
+ - **Model Type:** SetFit
66
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
67
+ - **Classification head:** a MultiOutputClassifier instance
68
+ - **Maximum Sequence Length:** 512 tokens
69
+ <!-- - **Number of Classes:** Unknown -->
70
+ - **Training Dataset:** [konsman/setfit-messages-optimized](https://huggingface.co/datasets/konsman/setfit-messages-optimized)
71
+ <!-- - **Language:** Unknown -->
72
+ <!-- - **License:** Unknown -->
73
+
74
+ ### Model Sources
75
+
76
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
77
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
78
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
79
+
80
+ ## Evaluation
81
+
82
+ ### Metrics
83
+ | Label | F1 | Accuracy |
84
+ |:--------|:-------|:---------|
85
+ | **all** | 0.6897 | 0.3404 |
86
+
87
+ ## Uses
88
+
89
+ ### Direct Use for Inference
90
+
91
+ First install the SetFit library:
92
+
93
+ ```bash
94
+ pip install setfit
95
+ ```
96
+
97
+ Then you can load this model and run inference.
98
+
99
+ ```python
100
+ from setfit import SetFitModel
101
+
102
+ # Download from the 🤗 Hub
103
+ model = SetFitModel.from_pretrained("konsman/setfit-messages-multilabel-example")
104
+ # Run inference
105
+ preds = model("Sorry forgot to say that unfortunately after this problem that made me let sports and with the anxiety meds . I am now 83 kg")
106
+ ```
107
+
108
+ <!--
109
+ ### Downstream Use
110
+
111
+ *List how someone could finetune this model on their own dataset.*
112
+ -->
113
+
114
+ <!--
115
+ ### Out-of-Scope Use
116
+
117
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
118
+ -->
119
+
120
+ <!--
121
+ ## Bias, Risks and Limitations
122
+
123
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
124
+ -->
125
+
126
+ <!--
127
+ ### Recommendations
128
+
129
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
130
+ -->
131
+
132
+ ## Training Details
133
+
134
+ ### Training Set Metrics
135
+ | Training set | Min | Median | Max |
136
+ |:-------------|:----|:---------|:----|
137
+ | Word count | 5 | 110.2344 | 469 |
138
+
139
+ ### Training Hyperparameters
140
+ - batch_size: (8, 8)
141
+ - num_epochs: (2, 2)
142
+ - max_steps: -1
143
+ - sampling_strategy: oversampling
144
+ - num_iterations: 5
145
+ - body_learning_rate: (2e-05, 2e-05)
146
+ - head_learning_rate: 2e-05
147
+ - loss: CosineSimilarityLoss
148
+ - distance_metric: cosine_distance
149
+ - margin: 0.25
150
+ - end_to_end: False
151
+ - use_amp: False
152
+ - warmup_proportion: 0.1
153
+ - seed: 42
154
+ - eval_max_steps: -1
155
+ - load_best_model_at_end: False
156
+
157
+ ### Training Results
158
+ | Epoch | Step | Training Loss | Validation Loss |
159
+ |:------:|:----:|:-------------:|:---------------:|
160
+ | 0.0031 | 1 | 0.3209 | - |
161
+ | 0.1562 | 50 | 0.1823 | - |
162
+ | 0.3125 | 100 | 0.1003 | - |
163
+ | 0.4688 | 150 | 0.1774 | - |
164
+ | 0.625 | 200 | 0.0832 | - |
165
+ | 0.7812 | 250 | 0.0828 | - |
166
+ | 0.9375 | 300 | 0.0721 | - |
167
+ | 1.0938 | 350 | 0.1331 | - |
168
+ | 1.25 | 400 | 0.1215 | - |
169
+ | 1.4062 | 450 | 0.1494 | - |
170
+ | 1.5625 | 500 | 0.0444 | - |
171
+ | 1.7188 | 550 | 0.0688 | - |
172
+ | 1.875 | 600 | 0.1033 | - |
173
+ | 0.0125 | 1 | 0.0508 | - |
174
+ | 0.625 | 50 | 0.0793 | - |
175
+ | 1.25 | 100 | 0.081 | - |
176
+ | 1.875 | 150 | 0.1367 | - |
177
+
178
+ ### Framework Versions
179
+ - Python: 3.10.12
180
+ - SetFit: 1.0.2
181
+ - Sentence Transformers: 2.2.2
182
+ - Transformers: 4.35.2
183
+ - PyTorch: 2.1.0+cu121
184
+ - Datasets: 2.16.1
185
+ - Tokenizers: 0.15.0
186
+
187
+ ## Citation
188
+
189
+ ### BibTeX
190
+ ```bibtex
191
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
192
+ doi = {10.48550/ARXIV.2209.11055},
193
+ url = {https://arxiv.org/abs/2209.11055},
194
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
195
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
196
+ title = {Efficient Few-Shot Learning Without Prompts},
197
+ publisher = {arXiv},
198
+ year = {2022},
199
+ copyright = {Creative Commons Attribution 4.0 International}
200
+ }
201
+ ```
202
+
203
+ <!--
204
+ ## Glossary
205
+
206
+ *Clearly define terms in order to be accessible across audiences.*
207
+ -->
208
+
209
+ <!--
210
+ ## Model Card Authors
211
+
212
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
213
+ -->
214
+
215
+ <!--
216
+ ## Model Card Contact
217
+
218
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
219
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/root/.cache/torch/sentence_transformers/sentence-transformers_paraphrase-mpnet-base-v2/",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.35.2",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.7.0",
5
+ "pytorch": "1.9.0+cu102"
6
+ }
7
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8eca6a898e0482da843bf64fd6e6375fc3bc29b603161135e7c90d003f514fa
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b284df56d2ed91130afe64bd2cfe18757a17a04461051c150d98763a7277bc75
3
+ size 52913
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": true,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 512,
52
+ "never_split": null,
53
+ "pad_token": "<pad>",
54
+ "sep_token": "</s>",
55
+ "strip_accents": null,
56
+ "tokenize_chinese_chars": true,
57
+ "tokenizer_class": "MPNetTokenizer",
58
+ "unk_token": "[UNK]"
59
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff