--- language: - hi license: apache-2.0 library_name: peft tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 base_model: openai/whisper-small model-index: - name: Whisper Small hi 2 results: [] --- # Whisper Small hi 2 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3689 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | No log | 0.0 | 1 | 2.2900 | | 0.5292 | 1.22 | 500 | 0.3877 | | 0.2389 | 2.44 | 1000 | 0.3418 | | 0.1726 | 3.67 | 1500 | 0.3191 | | 0.1228 | 4.89 | 2000 | 0.3221 | | 0.076 | 6.11 | 2500 | 0.3478 | | 0.0399 | 7.33 | 3000 | 0.3689 | ### Framework versions - PEFT 0.10.1.dev0 - Transformers 4.40.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2