korntewin's picture
Upload PPO LunarLander-v2 trained agent
303df62
{
"policy_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
"__module__": "stable_baselines3.dqn.policies",
"__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
"__init__": "<function DQNPolicy.__init__ at 0x7f367a4e20d0>",
"_build": "<function DQNPolicy._build at 0x7f367a4e2160>",
"make_q_net": "<function DQNPolicy.make_q_net at 0x7f367a4e21f0>",
"forward": "<function DQNPolicy.forward at 0x7f367a4e2280>",
"_predict": "<function DQNPolicy._predict at 0x7f367a4e2310>",
"_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f367a4e23a0>",
"set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f367a4e2430>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7f367a4dc510>"
},
"verbose": 0,
"policy_kwargs": {},
"observation_space": {
":type:": "<class 'gym.spaces.box.Box'>",
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
"dtype": "float32",
"_shape": [
8
],
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
"high": "[inf inf inf inf inf inf inf inf]",
"bounded_below": "[False False False False False False False False]",
"bounded_above": "[False False False False False False False False]",
"_np_random": null
},
"action_space": {
":type:": "<class 'gym.spaces.discrete.Discrete'>",
":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAmLukaINf+xiVXXvS7ogOaYa8zCTLFsBdK1i0Jd0J7RQC97OwHo1V/Ky1uw7hZ/FS99v/7lo+sbnb1QpP6DkWS7+gfdflN2C7h+jdUjbNhkkbnUe6Uv1SY9/Pu1Jm2fjfifW3Ef/LkRillL/C0ZVEK1cdDYe/tHWcNFjNCaEpDyvV9Bp2pEo561tvOMmmS92TZVoLTRNTB1fx8lHZveYUhSVp48fUTGkCGi/NKBYwbvvHUY2KS2TccWxQ0lys1oQFOjoGaMYVDSlLq1aOD1kFiC30BSHxoZ0A93k4niblA1lB5WOFHZFSlSosr1BqID3R0WSzmK1ftG5ySf0CikAuNxDlp+07MVRpHb2qzgKsRrrKlDsf8pNTqrKiH7mOx+Y3mNZCs/TWbgqRBg00gtgi2J/xwxiFPnq1ODsPs7cev4BtneNiuXkZp9Ir/WPm5WTfXbyhEOiCei42KlmBMj26ALm94oLoIZAhIQgMYHxqfYlfZpqVFZwb2awjvrFJVurXf3UjLT5ToIz+gseqHhiGG82em25I3eobfyLJ2Ua2Mnqhvx3raY/ts+SLD+jqMmH4dU7gfm9ulqhHt3T/eNQrWRZUOa1TM5jy6PRqfqMwvPsVLNQ2P0M0EfxQe3uBzsaiAE28cd3T0H2gwD0InRiJT4qjbOVEq9YZUjW6Oo+kvMsmkVXK/nayTLzq/E1o9j+/wDcf3VqsG9C2dzRQF+ZdokHx7MIgxlIPuqiJna+AVUrL9cMqUQnpud9ZK1gf/wKhOCQ1/x50uOKuBuHAWEOU8igkp01o5tlksCbeqay/dwmmONTihO0uPjNNvyGVo0SCsjaUiV7iUuKHTtN9+g5sNOEg8j/bQml1A4gbFszlIAgNvL2HG0OTCJyDrUjpUI9Gi0m9pJUkNt6aibaT6aWlpaIcBDOj208aP14WNCZf/Osy9Qs4f3N1jkj0BFenWy5XvaIurWgi3x6JmePOYYL5hWBFoDrpR+IwMYQ9cahsJzqQcMC4rihq8dYYqvl+HnYP4Kznl9KedjofaP9nnUASl89zzIQyx4BfJwBRy1P2AVEZc7SRA/cdyKlPXU8cwojCWcJzOPX2rYEGivWOiJHE3/thquexRZrYA10CJ34klYxqgCqxfmakz0AXUvB2M0MFPLNz1moEFjSuWOM4TDWMW+q3P1XtcbmSWlGhU1/AmPytk1WwET/GKLZIJafZedl/f1GMzX0B7VRkLhPyHIhCahYwCAXNAqlDo9Q/MH1/LYi5JrBxJUn0C6r4+lGvhvhL2RJBkkJc4hadVmMi9BLpcnvb/P8fUTN5T0zqB9rKy1VCtbqWYFAltb8fA3oIyBmcVyanYgjMlEVIO8khFxum0QGcCBpPXLzXl27UIJmEh9rNaVeDcLGP4YQFAMy6ZZedqxLpGf04Nf3XTa8YJw6fGmzruKOF4M63xHJKnK9mh7fL21xLynLGQRdcLcXd7277Ulm+bjt1OCINJ/jR2wo9+FkCwD/mVG1jH3ftde/coBRrUCgj0fulXT4E0E5SgmFOpUhUisifzeLvO66a7IvpqHhp4P6FKRBIvJu+X2MmGsWY+HH7vrkyb2h2/XsShCasgfi3rhMDkQCcy4dNX0lojt3ef6INnSLKJ6ivBT6+Tb86hvy/d+oW0sdPxnJkF7YbUOY3GXRGDtCXuYykxYWlBzLDzj1b1f7DqHp/v0FPc0p8TpKEpZIh1G2ZUgjglhSC33IJAJ5RRbankcJupaKMZAkNnPC+sBPvn3lAOfKMNB0cdeNv8qvkNrIY43W+uDp7IQvkFlDM+JR1h1WzTIiIica4ikhgphBUBLSKkhSihiduBF6jPaf/YBwUzz7K5M/VgNGMMLBqcwzO7m75/MrKozXm6awvsfHYytjXeC6gfcMurDA2NhiT60KYuM3wUGUDa+EkPK58kkzWGrjfRhqrOZfQGfRtiOO5OG40LMiSHbAyviTuuxSsMu1sE21e9a52MjK/nLg+I1u4Kdz2s6ByhV/pbdQMMznuwiKv6EBzxQXlwx/tnjjIQBX9H9Lqz2RbB6oX4ALiwCC8TVPA+Bwb21GLndqzolmip0piZE7LxH4G/nS+tkjxcAo7p9bGfHTzRUv5/fbtajx4dTAmTy4XmJH0B4yqeu1Kn8vp0JIQqF9ydtNO5NFXlL84wgdayFPn3Di4s7d3ceuxryiNLFy8u06DKZw/CoIkxghSy95ndeIxIqlehWsTVNU9FX6jGqDhvwTbG92j1GT61+msSjE7eCUtO234CmWrHt+0YgWJSHYYGIWVq/BB55UCO2YaXP7DsODeN02x95Vfxb5/aEJWZeZJqDIq6V17bc3DFUmiIqWNDRevoEk3FI+k0A4u7KQuSOaj+tuKuuXCogzSo2H4U5iPZB+X92nBfu0pNOYkodMwmR7rGxSCMYsjpb2oBObAmcrfJprsyC8V0Ha8dhuc4jSL+A+j3n08aw8BQDz59ClGvAKFkaqodqno7oQdTsvw+B4dUn+0nNn29yxQ2/h6ByVGrBzjUQPQ5qNAarD0MwqJIpduaZsCBeTvBu9hyuRM5kfW2rRgOE7y8wB+RJOYy9Mpf+X2Gz5ibdXiNlMZSxM4zLys+XEZ+xmiE12AIT4SsjmhlFvNniiIYh/tsWB1XSgB4wls6GJn28nhQEcCvxh5vYEo7tNOVqDFS1nVXYXcJOuFV6QJ/PAsG6rsrM9cRRMdisbz4PaSEIfbk72OCBJaWA9VY9UEWgdYX1sFFBzoUIhRO6CAS4xsniQ+FhsyEao/WRlnFNwiwPgeX5keFfKY3Tl5mqmWERbyXKYAqcSBRYsHZauYhDsfCQLHLKVUQChfAkxFyO2Z5pJEHiM48cvdDLGhewBz9qL6Cky9wMVu222vvUKVrLbUUCL0UU88c5Key+rCChX2GQkfSiCXRDkFWx4mCqax4Fmg/tEeoZQVVj+4Dk90ILbWqsKX3YKKzxpIbekQEtjKzU8U/3FQ42nvMQeV+yTqnjcCAFoq5+LYJrOgRpO6S+o8VPVQDiOplDdLUoNUI+sbJMeUv/mTA946Diu4LKa9Rl8dRhD5CDVMk7p5QPu5y4R0TbYkD5nyRks8mQLXZdxBcxQOpBksab0raTtjWN1lDtD1MUjdiUvBHGPlTS7vf61pyOm0tHqSjomqJDO5nXW+dIh8gsKbMHUdIOhj5ObCneQpT+SLCC9tQSYrFsCQoOBJHcbklk4O9l65BvVwZQFk201m5Hc3L1sBONP7AfilR9phQQ3PbY24gKrluXbvXBojr9LUeANoBFOvnmtRmPXyp0nT/L0pU28Opmr6YOaO8IiuKhuJFquJlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RL8HWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
"n": 4,
"_shape": [],
"dtype": "int64",
"_np_random": "RandomState(MT19937)"
},
"n_envs": 16,
"num_timesteps": 2000000,
"_total_timesteps": 2000000,
"_num_timesteps_at_start": 0,
"seed": 191,
"action_noise": null,
"start_time": 1677919569240831047,
"learning_rate": 0.0001,
"tensorboard_log": null,
"lr_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
},
"_last_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABOGgz5Pun89jLwpvSRzQ72frhC9Dq8NvQAAAAAAAAAAlhebPqJJHD97ab47y5kCvXK6DL1D++Y8AAAAAAAAAABNZ0M9DrINP3vfWTpgu3W7yJHSvLe5m7wAAAAAAAAAABPPAz4bzSI/RHCLvJ01Er0CRL29fjXbOwAAAAAAAAAAU/kkPhrbhT+brjW8Po4UvQ2Qlr32hu07AAAAAAAAAAAzMwk4ZdFxP/p6ZDohRgy9eDSnvRhM5rgAAAAAAAAAALNwTz6fIzw/auIwPcPGfrzxKAw8MEyAOwAAAAAAAAAAs7PKPZQZhj/rJXw9vbcEvbpE7jy7XXI8AAAAAAAAAADAIuI94y5QP0q/+jxPWqO8tLQvvVpWy7wAAAAAAAAAAJDmVL78PPI+OS6/Pbtb0r22Gei9sNpWPgAAAAAAAAAA7e9cPrtysD6Sm2y956g2vU6xkL3ykWG9AAAAAAAAAABgD2A+E1RFPwrOobyncK28JuUmvUALjDsAAAAAAAAAAGa/H72jh3Y/cDxzPbLlc70hFpy8eojWPAAAAAAAAAAAgJRQPmvlVT8FYlA9r6TivOAJLD0/Vg88AAAAAAAAAABjt5w+DnwWP4jZFr0Xj+U7fE1ovZ7We70AAAAAAAAAAHOL5T2968c+EFDuPE6ofrxUaje8gk1nPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_last_episode_starts": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
},
"_last_original_obs": {
":type:": "<class 'numpy.ndarray'>",
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAK2+gz6UD4I9f75KvctJqrwRmQm9PokUuwAAAAAAAAAAGg6bPrR4HD/AnzM8ngwhvbiAEr09NQ89AAAAAAAAAACzaEM9kLcNPwoQKjy9KgC9hcjKvCbk/rsAAAAAAAAAANP6Az7EASM/aCLYvB5CEbxh8729uco0PQAAAAAAAAAAcxUlPtr1hT/ocvu6JUIevBROl72Q8/C8AAAAAAAAAACamck35gNyPwD7JDzmkQe8lTGnvW6aGL0AAAAAAAAAAPr+Tj6LOjw/3U0nPYpC07zP8wg8EU2dOgAAAAAAAAAADW3JPXMxhj+GfYA9XfQTvZk16Dyek3A8AAAAAAAAAADNiOE9PkxQPwJAjTxLwOq8VJ8qvdPyEb0AAAAAAAAAAO32Vb5ibvM+8uOlPashmr36lf29pu6EPgAAAAAAAAAApo5dPt71sD7iCUC9x08tvagNi71yliy9AAAAAAAAAACTQmA+TXNFP4sxIbw/hZw7NcUnvQXnEb0AAAAAAAAAAAA8Ir1533Y/ln9LPQRvBL0n0Ka8tl6FPQAAAAAAAAAA+g1QPjMOVj9GY489a6EavTU/Kj0+fc08AAAAAAAAAAC965w+jnEWP9V2Xb1nywi99rVbvX5ulb0AAAAAAAAAADPv5D2VGcg+BdwePUxlHL0J+0K8a8fHPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
},
"_episode_num": 3689,
"use_sde": false,
"sde_sample_freq": -1,
"_current_progress_remaining": 0.0,
"ep_info_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0LaadcZSWMCUhpRSlIwBbJRN6AOMAXSUR0CnRnldTo+wdX2UKGgGaAloD0MIz/dT46UnScCUhpRSlGgVTegDaBZHQKdITDb8FZB1fZQoaAZoCWgPQwj6CtKMRZFHwJSGlFKUaBVN6ANoFkdAp1gm4kNWl3V9lChoBmgJaA9DCNf6IqEtkU3AlIaUUpRoFU3oA2gWR0CnWa1bzK9xdX2UKGgGaAloD0MIjdXm/1XPL8CUhpRSlGgVTegDaBZHQKdZ2py6tkp1fZQoaAZoCWgPQwjtDikGSG5cwJSGlFKUaBVN6ANoFkdAp1p1y3kPtnV9lChoBmgJaA9DCI47pYP1RlzAlIaUUpRoFU3oA2gWR0CnW7UlZ5iWdX2UKGgGaAloD0MIPYBFfv3aVMCUhpRSlGgVTegDaBZHQKdlVQemvW91fZQoaAZoCWgPQwgxfhr35gc6wJSGlFKUaBVN6ANoFkdAp2fSNhmXgXV9lChoBmgJaA9DCPHW+bfL/lnAlIaUUpRoFU3oA2gWR0CnZ/W6shgWdX2UKGgGaAloD0MIhzJUxVRRVcCUhpRSlGgVTegDaBZHQKdqRnvlU6x1fZQoaAZoCWgPQwj1Se6wiUg1wJSGlFKUaBVN6ANoFkdAp2wVOVPepHV9lChoBmgJaA9DCH2W58HdrUfAlIaUUpRoFU3oA2gWR0Cnc5efywwCdX2UKGgGaAloD0MItrqcEhBzQMCUhpRSlGgVTegDaBZHQKd01vZRKpV1fZQoaAZoCWgPQwhYjpCBPBsHwJSGlFKUaBVN6ANoFkdAp3cHXTVlPXV9lChoBmgJaA9DCMyWrIpwAVXAlIaUUpRoFU3oA2gWR0CneA8n3L3cdX2UKGgGaAloD0MIP/1nzY+PG8CUhpRSlGgVTegDaBZHQKd93rTpgTh1fZQoaAZoCWgPQwi8Wu7MBMVLwJSGlFKUaBVN6ANoFkdAp39Z53Tuv3V9lChoBmgJaA9DCBgip6/n60LAlIaUUpRoFU3oA2gWR0Cnj7YU34sVdX2UKGgGaAloD0MIob/QI0bMU8CUhpRSlGgVTegDaBZHQKeRVFRYRul1fZQoaAZoCWgPQwiTOgFNhFVBwJSGlFKUaBVN6ANoFkdAp5GI55qubXV9lChoBmgJaA9DCE5BfjZyi1HAlIaUUpRoFU3oA2gWR0Cnki8k2P1ddX2UKGgGaAloD0MIu2QcI9lLNsCUhpRSlGgVTegDaBZHQKeTkZ0CA+Z1fZQoaAZoCWgPQwjog2Vs6FBAwJSGlFKUaBVN6ANoFkdAp55ejXWe6XV9lChoBmgJaA9DCOPHmLuW8ETAlIaUUpRoFU3oA2gWR0CnoMiLl3hXdX2UKGgGaAloD0MIjZyFPe1gKsCUhpRSlGgVTegDaBZHQKeg7ErGza91fZQoaAZoCWgPQwhwXwfOGYZdwJSGlFKUaBVN6ANoFkdAp6OMdtEXtXV9lChoBmgJaA9DCBO7trdbxkrAlIaUUpRoFU3oA2gWR0CnpYsfzSThdX2UKGgGaAloD0MI+DJRhNTVTMCUhpRSlGgVTegDaBZHQKexkcvM8ox1fZQoaAZoCWgPQwjPEI5Z9ulcwJSGlFKUaBVN6ANoFkdAp7MBf0Eov3V9lChoBmgJaA9DCJELzuDv5FXAlIaUUpRoFU3oA2gWR0CntaL876pHdX2UKGgGaAloD0MIjZsaaD5bQMCUhpRSlGgVTegDaBZHQKe2wCJXQt11fZQoaAZoCWgPQwhNSkG3l35DwJSGlFKUaBVN6ANoFkdAp70o5o4+83V9lChoBmgJaA9DCFU01v7OnjlAlIaUUpRoFU3oA2gWR0CnvviiZfD2dX2UKGgGaAloD0MIjspN1NL8WcCUhpRSlGgVTegDaBZHQKfP9aJyhi91fZQoaAZoCWgPQwgN5NnlW5FSwJSGlFKUaBVN6ANoFkdAp9GRXjlxO3V9lChoBmgJaA9DCJi+1xAcXVHAlIaUUpRoFU3oA2gWR0Cn0cHJT2nLdX2UKGgGaAloD0MIa9eEtMbMPMCUhpRSlGgVTegDaBZHQKfSWTibUgB1fZQoaAZoCWgPQwjlC1pIwKgTwJSGlFKUaBVN6ANoFkdAp9O6S/0ulHV9lChoBmgJaA9DCA5pVOBkPzDAlIaUUpRoFU3oA2gWR0Cn3uVFQVKxdX2UKGgGaAloD0MIDW0ANiDeUMCUhpRSlGgVTegDaBZHQKfhfqu8sc11fZQoaAZoCWgPQwiimSfXFJ1SwJSGlFKUaBVN6ANoFkdAp+Get6ol2XV9lChoBmgJaA9DCPUqMjogx1TAlIaUUpRoFU3oA2gWR0Cn4/CcXm/4dX2UKGgGaAloD0MIkYE8u3y7UcCUhpRSlGgVTegDaBZHQKfllDjzZpV1fZQoaAZoCWgPQwghBU8hV2NWwJSGlFKUaBVN6ANoFkdAp+z2De0ojXV9lChoBmgJaA9DCFcju9IywkXAlIaUUpRoFU3oA2gWR0Cn7kjgydnTdX2UKGgGaAloD0MIKo2Y2eemVsCUhpRSlGgVTegDaBZHQKfwvzvJA+p1fZQoaAZoCWgPQwhh4Ln3cE5RwJSGlFKUaBVN6ANoFkdAp/HY065oXnV9lChoBmgJaA9DCGw9QzhmgU7AlIaUUpRoFU3oA2gWR0Cn+BYY77sOdX2UKGgGaAloD0MIVg+Yh8x8akCUhpRSlGgVTdQCaBZHQKf5K5/b0vp1fZQoaAZoCWgPQwju6eqOxVYxwJSGlFKUaBVN6ANoFkdAp/ncYfnwHHV9lChoBmgJaA9DCPUSY5l+lVHAlIaUUpRoFU3oA2gWR0CoCqJiiItUdX2UKGgGaAloD0MICkrRyr3WSsCUhpRSlGgVTegDaBZHQKgMafywwCd1fZQoaAZoCWgPQwgbLnJPVwtTwJSGlFKUaBVN6ANoFkdAqA0XQla8pXV9lChoBmgJaA9DCAIPDCB8ukfAlIaUUpRoFU3oA2gWR0CoDrWNNrTIdX2UKGgGaAloD0MIIqmFkslbSsCUhpRSlGgVTegDaBZHQKgb7E1l5GB1fZQoaAZoCWgPQwgTgH9KlTpIwJSGlFKUaBVN6ANoFkdAqB7s3sHB13V9lChoBmgJaA9DCJ/Ik6RrljrAlIaUUpRoFU3oA2gWR0CoHxIPsiSrdX2UKGgGaAloD0MI9S1zuizSWsCUhpRSlGgVTegDaBZHQKghWU/wAlx1fZQoaAZoCWgPQwhmpN5TOYdOQJSGlFKUaBVN6ANoFkdAqCLHZuhsZnV9lChoBmgJaA9DCLOZQ1ILxGRAlIaUUpRoFU3lAmgWR0CoKc10Lc9GdX2UKGgGaAloD0MIQup29pVvKcCUhpRSlGgVTegDaBZHQKgqYMWoFV11fZQoaAZoCWgPQwhQHEC/7+BQwJSGlFKUaBVN6ANoFkdAqCutRm9QGnV9lChoBmgJaA9DCPHxCdl5d1BAlIaUUpRoFU3oA2gWR0CoLa1bRne0dX2UKGgGaAloD0MICK2HLxMrUMCUhpRSlGgVTegDaBZHQKguiBkI5YJ1fZQoaAZoCWgPQwjePqvMlLI4wJSGlFKUaBVN6ANoFkdAqDNqXt0FKXV9lChoBmgJaA9DCH0FacaiD1HAlIaUUpRoFU3oA2gWR0CoNDl4s3AEdX2UKGgGaAloD0MIeo7IdykdNsCUhpRSlGgVTegDaBZHQKhCuF2V3Ux1fZQoaAZoCWgPQwjDoEyjyQ1KwJSGlFKUaBVN6ANoFkdAqEQkxdpqRHV9lChoBmgJaA9DCMWrrG2KjUnAlIaUUpRoFU3oA2gWR0CoRLZYPoV3dX2UKGgGaAloD0MI2bCmsih0JcCUhpRSlGgVTegDaBZHQKhGBt+Csfd1fZQoaAZoCWgPQwjAX8yWrB5TwJSGlFKUaBVN6ANoFkdAqE/wgTyrgnV9lChoBmgJaA9DCLe3W5ID0lLAlIaUUpRoFU3oA2gWR0CoUbrL6k6+dX2UKGgGaAloD0MIJCpUNxcLOMCUhpRSlGgVTegDaBZHQKhRz4dp7C11fZQoaAZoCWgPQwi8XMR3YntUwJSGlFKUaBVN6ANoFkdAqFQ1TkyULXV9lChoBmgJaA9DCAQfgxWnzjHAlIaUUpRoFU3oA2gWR0CoVf0VrRBvdX2UKGgGaAloD0MIXYjVH2FoQsCUhpRSlGgVTegDaBZHQKheWGTLW7R1fZQoaAZoCWgPQwjWkLjH0vcUwJSGlFKUaBVN6ANoFkdAqF7wFkhA4XV9lChoBmgJaA9DCOzZc5masEBAlIaUUpRoFU3oA2gWR0CoYB30f5k9dX2UKGgGaAloD0MIa0qyDkfHVcCUhpRSlGgVTegDaBZHQKhiOHHFPzp1fZQoaAZoCWgPQwjtgywLJh4fwJSGlFKUaBVN6ANoFkdAqGMrqhUR4HV9lChoBmgJaA9DCFSsGoS50UZAlIaUUpRoFU3oA2gWR0CoaM7iZOSGdX2UKGgGaAloD0MIwAMDCB8CSMCUhpRSlGgVTegDaBZHQKhpv62v0RR1fZQoaAZoCWgPQwh4gCctXJJEQJSGlFKUaBVL2GgWR0Coafu2RaHLdX2UKGgGaAloD0MIP4178xszUMCUhpRSlGgVTegDaBZHQKh6bqzqrzZ1fZQoaAZoCWgPQwjoFU890s9RwJSGlFKUaBVN6ANoFkdAqHw7iIcin3V9lChoBmgJaA9DCLMmFviKn1PAlIaUUpRoFU3oA2gWR0CofP4PwuuidX2UKGgGaAloD0MI8Uv9vKlQS8CUhpRSlGgVTegDaBZHQKh+pv2oNut1fZQoaAZoCWgPQwhq9kArMHJFwJSGlFKUaBVN6ANoFkdAqItYg5imVXV9lChoBmgJaA9DCE1mvK30NEbAlIaUUpRoFU3oA2gWR0Cojen1e0HAdX2UKGgGaAloD0MI6YGPwYq5RsCUhpRSlGgVTegDaBZHQKiOEAVfu1F1fZQoaAZoCWgPQwgOwAZEiCNGwJSGlFKUaBVN6ANoFkdAqJDwudwvQHV9lChoBmgJaA9DCFGHFW75w1DAlIaUUpRoFU3oA2gWR0CokxjLjghsdX2UKGgGaAloD0MI22tB743RI8CUhpRSlGgVTegDaBZHQKicVXYlIEt1fZQoaAZoCWgPQwjMYIxIFEhOwJSGlFKUaBVN6ANoFkdAqJ0OxnnMdXV9lChoBmgJaA9DCL5p+uyAtVDAlIaUUpRoFU3oA2gWR0CooTYDDCP7dX2UKGgGaAloD0MI6/8c5svzO8CUhpRSlGgVTegDaBZHQKiib+wTufF1fZQoaAZoCWgPQwgTQ3IycRdWwJSGlFKUaBVN6ANoFkdAqKkb4tYjjnV9lChoBmgJaA9DCM0C7Q4prkvAlIaUUpRoFU3oA2gWR0CoqiEzXSSedX2UKGgGaAloD0MIY2GInL4yN8CUhpRSlGgVTegDaBZHQKiqfZ4fOlh1ZS4="
},
"ep_success_buffer": {
":type:": "<class 'collections.deque'>",
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
},
"_n_updates": 30469,
"buffer_size": 1000000,
"batch_size": 32,
"learning_starts": 50000,
"tau": 1.0,
"gamma": 0.99,
"gradient_steps": 1,
"optimize_memory_usage": false,
"replay_buffer_class": {
":type:": "<class 'abc.ABCMeta'>",
":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
"__module__": "stable_baselines3.common.buffers",
"__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
"__init__": "<function ReplayBuffer.__init__ at 0x7f367a51cb80>",
"add": "<function ReplayBuffer.add at 0x7f367a51cc10>",
"sample": "<function ReplayBuffer.sample at 0x7f367a51cca0>",
"_get_samples": "<function ReplayBuffer._get_samples at 0x7f367a51cd30>",
"__abstractmethods__": "frozenset()",
"_abc_impl": "<_abc_data object at 0x7f367a5243f0>"
},
"replay_buffer_kwargs": {},
"train_freq": {
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
},
"actor": null,
"use_sde_at_warmup": false,
"exploration_initial_eps": 1.0,
"exploration_final_eps": 0.05,
"exploration_fraction": 0.1,
"target_update_interval": 625,
"_n_calls": 125000,
"max_grad_norm": 10,
"exploration_rate": 0.05,
"exploration_schedule": {
":type:": "<class 'function'>",
":serialized:": "gAWVZwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyxkAXwAGACIAWsEchCIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAZABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy44L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLcEMGAAEMAQQClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy44L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB0pUpRoHSlSlIeUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgjfZR9lChoGGgNjAxfX3F1YWxuYW1lX1+UjBtnZXRfbGluZWFyX2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQoaAqMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoL3WMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+pmZmZmZmahZRSlGg3Rz+5mZmZmZmahZRSlGg3Rz/wAAAAAAAAhZRSlIeUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
},
"batch_norm_stats": [],
"batch_norm_stats_target": []
}