Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +28 -28
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 280.11 +/- 19.64
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x7f367a4e20d0>", "_build": "<function DQNPolicy._build at 0x7f367a4e2160>", "make_q_net": "<function DQNPolicy.make_q_net at 0x7f367a4e21f0>", "forward": "<function DQNPolicy.forward at 0x7f367a4e2280>", "_predict": "<function DQNPolicy._predict at 0x7f367a4e2310>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x7f367a4e23a0>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x7f367a4e2430>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f367a4dc510>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAmLukaINf+xiVXXvS7ogOaYa8zCTLFsBdK1i0Jd0J7RQC97OwHo1V/Ky1uw7hZ/FS99v/7lo+sbnb1QpP6DkWS7+gfdflN2C7h+jdUjbNhkkbnUe6Uv1SY9/Pu1Jm2fjfifW3Ef/LkRillL/C0ZVEK1cdDYe/tHWcNFjNCaEpDyvV9Bp2pEo561tvOMmmS92TZVoLTRNTB1fx8lHZveYUhSVp48fUTGkCGi/NKBYwbvvHUY2KS2TccWxQ0lys1oQFOjoGaMYVDSlLq1aOD1kFiC30BSHxoZ0A93k4niblA1lB5WOFHZFSlSosr1BqID3R0WSzmK1ftG5ySf0CikAuNxDlp+07MVRpHb2qzgKsRrrKlDsf8pNTqrKiH7mOx+Y3mNZCs/TWbgqRBg00gtgi2J/xwxiFPnq1ODsPs7cev4BtneNiuXkZp9Ir/WPm5WTfXbyhEOiCei42KlmBMj26ALm94oLoIZAhIQgMYHxqfYlfZpqVFZwb2awjvrFJVurXf3UjLT5ToIz+gseqHhiGG82em25I3eobfyLJ2Ua2Mnqhvx3raY/ts+SLD+jqMmH4dU7gfm9ulqhHt3T/eNQrWRZUOa1TM5jy6PRqfqMwvPsVLNQ2P0M0EfxQe3uBzsaiAE28cd3T0H2gwD0InRiJT4qjbOVEq9YZUjW6Oo+kvMsmkVXK/nayTLzq/E1o9j+/wDcf3VqsG9C2dzRQF+ZdokHx7MIgxlIPuqiJna+AVUrL9cMqUQnpud9ZK1gf/wKhOCQ1/x50uOKuBuHAWEOU8igkp01o5tlksCbeqay/dwmmONTihO0uPjNNvyGVo0SCsjaUiV7iUuKHTtN9+g5sNOEg8j/bQml1A4gbFszlIAgNvL2HG0OTCJyDrUjpUI9Gi0m9pJUkNt6aibaT6aWlpaIcBDOj208aP14WNCZf/Osy9Qs4f3N1jkj0BFenWy5XvaIurWgi3x6JmePOYYL5hWBFoDrpR+IwMYQ9cahsJzqQcMC4rihq8dYYqvl+HnYP4Kznl9KedjofaP9nnUASl89zzIQyx4BfJwBRy1P2AVEZc7SRA/cdyKlPXU8cwojCWcJzOPX2rYEGivWOiJHE3/thquexRZrYA10CJ34klYxqgCqxfmakz0AXUvB2M0MFPLNz1moEFjSuWOM4TDWMW+q3P1XtcbmSWlGhU1/AmPytk1WwET/GKLZIJafZedl/f1GMzX0B7VRkLhPyHIhCahYwCAXNAqlDo9Q/MH1/LYi5JrBxJUn0C6r4+lGvhvhL2RJBkkJc4hadVmMi9BLpcnvb/P8fUTN5T0zqB9rKy1VCtbqWYFAltb8fA3oIyBmcVyanYgjMlEVIO8khFxum0QGcCBpPXLzXl27UIJmEh9rNaVeDcLGP4YQFAMy6ZZedqxLpGf04Nf3XTa8YJw6fGmzruKOF4M63xHJKnK9mh7fL21xLynLGQRdcLcXd7277Ulm+bjt1OCINJ/jR2wo9+FkCwD/mVG1jH3ftde/coBRrUCgj0fulXT4E0E5SgmFOpUhUisifzeLvO66a7IvpqHhp4P6FKRBIvJu+X2MmGsWY+HH7vrkyb2h2/XsShCasgfi3rhMDkQCcy4dNX0lojt3ef6INnSLKJ6ivBT6+Tb86hvy/d+oW0sdPxnJkF7YbUOY3GXRGDtCXuYykxYWlBzLDzj1b1f7DqHp/v0FPc0p8TpKEpZIh1G2ZUgjglhSC33IJAJ5RRbankcJupaKMZAkNnPC+sBPvn3lAOfKMNB0cdeNv8qvkNrIY43W+uDp7IQvkFlDM+JR1h1WzTIiIica4ikhgphBUBLSKkhSihiduBF6jPaf/YBwUzz7K5M/VgNGMMLBqcwzO7m75/MrKozXm6awvsfHYytjXeC6gfcMurDA2NhiT60KYuM3wUGUDa+EkPK58kkzWGrjfRhqrOZfQGfRtiOO5OG40LMiSHbAyviTuuxSsMu1sE21e9a52MjK/nLg+I1u4Kdz2s6ByhV/pbdQMMznuwiKv6EBzxQXlwx/tnjjIQBX9H9Lqz2RbB6oX4ALiwCC8TVPA+Bwb21GLndqzolmip0piZE7LxH4G/nS+tkjxcAo7p9bGfHTzRUv5/fbtajx4dTAmTy4XmJH0B4yqeu1Kn8vp0JIQqF9ydtNO5NFXlL84wgdayFPn3Di4s7d3ceuxryiNLFy8u06DKZw/CoIkxghSy95ndeIxIqlehWsTVNU9FX6jGqDhvwTbG92j1GT61+msSjE7eCUtO234CmWrHt+0YgWJSHYYGIWVq/BB55UCO2YaXP7DsODeN02x95Vfxb5/aEJWZeZJqDIq6V17bc3DFUmiIqWNDRevoEk3FI+k0A4u7KQuSOaj+tuKuuXCogzSo2H4U5iPZB+X92nBfu0pNOYkodMwmR7rGxSCMYsjpb2oBObAmcrfJprsyC8V0Ha8dhuc4jSL+A+j3n08aw8BQDz59ClGvAKFkaqodqno7oQdTsvw+B4dUn+0nNn29yxQ2/h6ByVGrBzjUQPQ5qNAarD0MwqJIpduaZsCBeTvBu9hyuRM5kfW2rRgOE7y8wB+RJOYy9Mpf+X2Gz5ibdXiNlMZSxM4zLys+XEZ+xmiE12AIT4SsjmhlFvNniiIYh/tsWB1XSgB4wls6GJn28nhQEcCvxh5vYEo7tNOVqDFS1nVXYXcJOuFV6QJ/PAsG6rsrM9cRRMdisbz4PaSEIfbk72OCBJaWA9VY9UEWgdYX1sFFBzoUIhRO6CAS4xsniQ+FhsyEao/WRlnFNwiwPgeX5keFfKY3Tl5mqmWERbyXKYAqcSBRYsHZauYhDsfCQLHLKVUQChfAkxFyO2Z5pJEHiM48cvdDLGhewBz9qL6Cky9wMVu222vvUKVrLbUUCL0UU88c5Key+rCChX2GQkfSiCXRDkFWx4mCqax4Fmg/tEeoZQVVj+4Dk90ILbWqsKX3YKKzxpIbekQEtjKzU8U/3FQ42nvMQeV+yTqnjcCAFoq5+LYJrOgRpO6S+o8VPVQDiOplDdLUoNUI+sbJMeUv/mTA946Diu4LKa9Rl8dRhD5CDVMk7p5QPu5y4R0TbYkD5nyRks8mQLXZdxBcxQOpBksab0raTtjWN1lDtD1MUjdiUvBHGPlTS7vf61pyOm0tHqSjomqJDO5nXW+dIh8gsKbMHUdIOhj5ObCneQpT+SLCC9tQSYrFsCQoOBJHcbklk4O9l65BvVwZQFk201m5Hc3L1sBONP7AfilR9phQQ3PbY24gKrluXbvXBojr9LUeANoBFOvnmtRmPXyp0nT/L0pU28Opmr6YOaO8IiuKhuJFquJlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RL8HWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 16, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": 191, "action_noise": null, "start_time": 1677919569240831047, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABOGgz5Pun89jLwpvSRzQ72frhC9Dq8NvQAAAAAAAAAAlhebPqJJHD97ab47y5kCvXK6DL1D++Y8AAAAAAAAAABNZ0M9DrINP3vfWTpgu3W7yJHSvLe5m7wAAAAAAAAAABPPAz4bzSI/RHCLvJ01Er0CRL29fjXbOwAAAAAAAAAAU/kkPhrbhT+brjW8Po4UvQ2Qlr32hu07AAAAAAAAAAAzMwk4ZdFxP/p6ZDohRgy9eDSnvRhM5rgAAAAAAAAAALNwTz6fIzw/auIwPcPGfrzxKAw8MEyAOwAAAAAAAAAAs7PKPZQZhj/rJXw9vbcEvbpE7jy7XXI8AAAAAAAAAADAIuI94y5QP0q/+jxPWqO8tLQvvVpWy7wAAAAAAAAAAJDmVL78PPI+OS6/Pbtb0r22Gei9sNpWPgAAAAAAAAAA7e9cPrtysD6Sm2y956g2vU6xkL3ykWG9AAAAAAAAAABgD2A+E1RFPwrOobyncK28JuUmvUALjDsAAAAAAAAAAGa/H72jh3Y/cDxzPbLlc70hFpy8eojWPAAAAAAAAAAAgJRQPmvlVT8FYlA9r6TivOAJLD0/Vg88AAAAAAAAAABjt5w+DnwWP4jZFr0Xj+U7fE1ovZ7We70AAAAAAAAAAHOL5T2968c+EFDuPE6ofrxUaje8gk1nPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAK2+gz6UD4I9f75KvctJqrwRmQm9PokUuwAAAAAAAAAAGg6bPrR4HD/AnzM8ngwhvbiAEr09NQ89AAAAAAAAAACzaEM9kLcNPwoQKjy9KgC9hcjKvCbk/rsAAAAAAAAAANP6Az7EASM/aCLYvB5CEbxh8729uco0PQAAAAAAAAAAcxUlPtr1hT/ocvu6JUIevBROl72Q8/C8AAAAAAAAAACamck35gNyPwD7JDzmkQe8lTGnvW6aGL0AAAAAAAAAAPr+Tj6LOjw/3U0nPYpC07zP8wg8EU2dOgAAAAAAAAAADW3JPXMxhj+GfYA9XfQTvZk16Dyek3A8AAAAAAAAAADNiOE9PkxQPwJAjTxLwOq8VJ8qvdPyEb0AAAAAAAAAAO32Vb5ibvM+8uOlPashmr36lf29pu6EPgAAAAAAAAAApo5dPt71sD7iCUC9x08tvagNi71yliy9AAAAAAAAAACTQmA+TXNFP4sxIbw/hZw7NcUnvQXnEb0AAAAAAAAAAAA8Ir1533Y/ln9LPQRvBL0n0Ka8tl6FPQAAAAAAAAAA+g1QPjMOVj9GY489a6EavTU/Kj0+fc08AAAAAAAAAAC965w+jnEWP9V2Xb1nywi99rVbvX5ulb0AAAAAAAAAADPv5D2VGcg+BdwePUxlHL0J+0K8a8fHPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_episode_num": 3689, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI0LaadcZSWMCUhpRSlIwBbJRN6AOMAXSUR0CnRnldTo+wdX2UKGgGaAloD0MIz/dT46UnScCUhpRSlGgVTegDaBZHQKdITDb8FZB1fZQoaAZoCWgPQwj6CtKMRZFHwJSGlFKUaBVN6ANoFkdAp1gm4kNWl3V9lChoBmgJaA9DCNf6IqEtkU3AlIaUUpRoFU3oA2gWR0CnWa1bzK9xdX2UKGgGaAloD0MIjdXm/1XPL8CUhpRSlGgVTegDaBZHQKdZ2py6tkp1fZQoaAZoCWgPQwjtDikGSG5cwJSGlFKUaBVN6ANoFkdAp1p1y3kPtnV9lChoBmgJaA9DCI47pYP1RlzAlIaUUpRoFU3oA2gWR0CnW7UlZ5iWdX2UKGgGaAloD0MIPYBFfv3aVMCUhpRSlGgVTegDaBZHQKdlVQemvW91fZQoaAZoCWgPQwgxfhr35gc6wJSGlFKUaBVN6ANoFkdAp2fSNhmXgXV9lChoBmgJaA9DCPHW+bfL/lnAlIaUUpRoFU3oA2gWR0CnZ/W6shgWdX2UKGgGaAloD0MIhzJUxVRRVcCUhpRSlGgVTegDaBZHQKdqRnvlU6x1fZQoaAZoCWgPQwj1Se6wiUg1wJSGlFKUaBVN6ANoFkdAp2wVOVPepHV9lChoBmgJaA9DCH2W58HdrUfAlIaUUpRoFU3oA2gWR0Cnc5efywwCdX2UKGgGaAloD0MItrqcEhBzQMCUhpRSlGgVTegDaBZHQKd01vZRKpV1fZQoaAZoCWgPQwhYjpCBPBsHwJSGlFKUaBVN6ANoFkdAp3cHXTVlPXV9lChoBmgJaA9DCMyWrIpwAVXAlIaUUpRoFU3oA2gWR0CneA8n3L3cdX2UKGgGaAloD0MIP/1nzY+PG8CUhpRSlGgVTegDaBZHQKd93rTpgTh1fZQoaAZoCWgPQwi8Wu7MBMVLwJSGlFKUaBVN6ANoFkdAp39Z53Tuv3V9lChoBmgJaA9DCBgip6/n60LAlIaUUpRoFU3oA2gWR0Cnj7YU34sVdX2UKGgGaAloD0MIob/QI0bMU8CUhpRSlGgVTegDaBZHQKeRVFRYRul1fZQoaAZoCWgPQwiTOgFNhFVBwJSGlFKUaBVN6ANoFkdAp5GI55qubXV9lChoBmgJaA9DCE5BfjZyi1HAlIaUUpRoFU3oA2gWR0Cnki8k2P1ddX2UKGgGaAloD0MIu2QcI9lLNsCUhpRSlGgVTegDaBZHQKeTkZ0CA+Z1fZQoaAZoCWgPQwjog2Vs6FBAwJSGlFKUaBVN6ANoFkdAp55ejXWe6XV9lChoBmgJaA9DCOPHmLuW8ETAlIaUUpRoFU3oA2gWR0CnoMiLl3hXdX2UKGgGaAloD0MIjZyFPe1gKsCUhpRSlGgVTegDaBZHQKeg7ErGza91fZQoaAZoCWgPQwhwXwfOGYZdwJSGlFKUaBVN6ANoFkdAp6OMdtEXtXV9lChoBmgJaA9DCBO7trdbxkrAlIaUUpRoFU3oA2gWR0CnpYsfzSThdX2UKGgGaAloD0MI+DJRhNTVTMCUhpRSlGgVTegDaBZHQKexkcvM8ox1fZQoaAZoCWgPQwjPEI5Z9ulcwJSGlFKUaBVN6ANoFkdAp7MBf0Eov3V9lChoBmgJaA9DCJELzuDv5FXAlIaUUpRoFU3oA2gWR0CntaL876pHdX2UKGgGaAloD0MIjZsaaD5bQMCUhpRSlGgVTegDaBZHQKe2wCJXQt11fZQoaAZoCWgPQwhNSkG3l35DwJSGlFKUaBVN6ANoFkdAp70o5o4+83V9lChoBmgJaA9DCFU01v7OnjlAlIaUUpRoFU3oA2gWR0CnvviiZfD2dX2UKGgGaAloD0MIjspN1NL8WcCUhpRSlGgVTegDaBZHQKfP9aJyhi91fZQoaAZoCWgPQwgN5NnlW5FSwJSGlFKUaBVN6ANoFkdAp9GRXjlxO3V9lChoBmgJaA9DCJi+1xAcXVHAlIaUUpRoFU3oA2gWR0Cn0cHJT2nLdX2UKGgGaAloD0MIa9eEtMbMPMCUhpRSlGgVTegDaBZHQKfSWTibUgB1fZQoaAZoCWgPQwjlC1pIwKgTwJSGlFKUaBVN6ANoFkdAp9O6S/0ulHV9lChoBmgJaA9DCA5pVOBkPzDAlIaUUpRoFU3oA2gWR0Cn3uVFQVKxdX2UKGgGaAloD0MIDW0ANiDeUMCUhpRSlGgVTegDaBZHQKfhfqu8sc11fZQoaAZoCWgPQwiimSfXFJ1SwJSGlFKUaBVN6ANoFkdAp+Get6ol2XV9lChoBmgJaA9DCPUqMjogx1TAlIaUUpRoFU3oA2gWR0Cn4/CcXm/4dX2UKGgGaAloD0MIkYE8u3y7UcCUhpRSlGgVTegDaBZHQKfllDjzZpV1fZQoaAZoCWgPQwghBU8hV2NWwJSGlFKUaBVN6ANoFkdAp+z2De0ojXV9lChoBmgJaA9DCFcju9IywkXAlIaUUpRoFU3oA2gWR0Cn7kjgydnTdX2UKGgGaAloD0MIKo2Y2eemVsCUhpRSlGgVTegDaBZHQKfwvzvJA+p1fZQoaAZoCWgPQwhh4Ln3cE5RwJSGlFKUaBVN6ANoFkdAp/HY065oXnV9lChoBmgJaA9DCGw9QzhmgU7AlIaUUpRoFU3oA2gWR0Cn+BYY77sOdX2UKGgGaAloD0MIVg+Yh8x8akCUhpRSlGgVTdQCaBZHQKf5K5/b0vp1fZQoaAZoCWgPQwju6eqOxVYxwJSGlFKUaBVN6ANoFkdAp/ncYfnwHHV9lChoBmgJaA9DCPUSY5l+lVHAlIaUUpRoFU3oA2gWR0CoCqJiiItUdX2UKGgGaAloD0MICkrRyr3WSsCUhpRSlGgVTegDaBZHQKgMafywwCd1fZQoaAZoCWgPQwgbLnJPVwtTwJSGlFKUaBVN6ANoFkdAqA0XQla8pXV9lChoBmgJaA9DCAIPDCB8ukfAlIaUUpRoFU3oA2gWR0CoDrWNNrTIdX2UKGgGaAloD0MIIqmFkslbSsCUhpRSlGgVTegDaBZHQKgb7E1l5GB1fZQoaAZoCWgPQwgTgH9KlTpIwJSGlFKUaBVN6ANoFkdAqB7s3sHB13V9lChoBmgJaA9DCJ/Ik6RrljrAlIaUUpRoFU3oA2gWR0CoHxIPsiSrdX2UKGgGaAloD0MI9S1zuizSWsCUhpRSlGgVTegDaBZHQKghWU/wAlx1fZQoaAZoCWgPQwhmpN5TOYdOQJSGlFKUaBVN6ANoFkdAqCLHZuhsZnV9lChoBmgJaA9DCLOZQ1ILxGRAlIaUUpRoFU3lAmgWR0CoKc10Lc9GdX2UKGgGaAloD0MIQup29pVvKcCUhpRSlGgVTegDaBZHQKgqYMWoFV11fZQoaAZoCWgPQwhQHEC/7+BQwJSGlFKUaBVN6ANoFkdAqCutRm9QGnV9lChoBmgJaA9DCPHxCdl5d1BAlIaUUpRoFU3oA2gWR0CoLa1bRne0dX2UKGgGaAloD0MICK2HLxMrUMCUhpRSlGgVTegDaBZHQKguiBkI5YJ1fZQoaAZoCWgPQwjePqvMlLI4wJSGlFKUaBVN6ANoFkdAqDNqXt0FKXV9lChoBmgJaA9DCH0FacaiD1HAlIaUUpRoFU3oA2gWR0CoNDl4s3AEdX2UKGgGaAloD0MIeo7IdykdNsCUhpRSlGgVTegDaBZHQKhCuF2V3Ux1fZQoaAZoCWgPQwjDoEyjyQ1KwJSGlFKUaBVN6ANoFkdAqEQkxdpqRHV9lChoBmgJaA9DCMWrrG2KjUnAlIaUUpRoFU3oA2gWR0CoRLZYPoV3dX2UKGgGaAloD0MI2bCmsih0JcCUhpRSlGgVTegDaBZHQKhGBt+Csfd1fZQoaAZoCWgPQwjAX8yWrB5TwJSGlFKUaBVN6ANoFkdAqE/wgTyrgnV9lChoBmgJaA9DCLe3W5ID0lLAlIaUUpRoFU3oA2gWR0CoUbrL6k6+dX2UKGgGaAloD0MIJCpUNxcLOMCUhpRSlGgVTegDaBZHQKhRz4dp7C11fZQoaAZoCWgPQwi8XMR3YntUwJSGlFKUaBVN6ANoFkdAqFQ1TkyULXV9lChoBmgJaA9DCAQfgxWnzjHAlIaUUpRoFU3oA2gWR0CoVf0VrRBvdX2UKGgGaAloD0MIXYjVH2FoQsCUhpRSlGgVTegDaBZHQKheWGTLW7R1fZQoaAZoCWgPQwjWkLjH0vcUwJSGlFKUaBVN6ANoFkdAqF7wFkhA4XV9lChoBmgJaA9DCOzZc5masEBAlIaUUpRoFU3oA2gWR0CoYB30f5k9dX2UKGgGaAloD0MIa0qyDkfHVcCUhpRSlGgVTegDaBZHQKhiOHHFPzp1fZQoaAZoCWgPQwjtgywLJh4fwJSGlFKUaBVN6ANoFkdAqGMrqhUR4HV9lChoBmgJaA9DCFSsGoS50UZAlIaUUpRoFU3oA2gWR0CoaM7iZOSGdX2UKGgGaAloD0MIwAMDCB8CSMCUhpRSlGgVTegDaBZHQKhpv62v0RR1fZQoaAZoCWgPQwh4gCctXJJEQJSGlFKUaBVL2GgWR0Coafu2RaHLdX2UKGgGaAloD0MIP4178xszUMCUhpRSlGgVTegDaBZHQKh6bqzqrzZ1fZQoaAZoCWgPQwjoFU890s9RwJSGlFKUaBVN6ANoFkdAqHw7iIcin3V9lChoBmgJaA9DCLMmFviKn1PAlIaUUpRoFU3oA2gWR0CofP4PwuuidX2UKGgGaAloD0MI8Uv9vKlQS8CUhpRSlGgVTegDaBZHQKh+pv2oNut1fZQoaAZoCWgPQwhq9kArMHJFwJSGlFKUaBVN6ANoFkdAqItYg5imVXV9lChoBmgJaA9DCE1mvK30NEbAlIaUUpRoFU3oA2gWR0Cojen1e0HAdX2UKGgGaAloD0MI6YGPwYq5RsCUhpRSlGgVTegDaBZHQKiOEAVfu1F1fZQoaAZoCWgPQwgOwAZEiCNGwJSGlFKUaBVN6ANoFkdAqJDwudwvQHV9lChoBmgJaA9DCFGHFW75w1DAlIaUUpRoFU3oA2gWR0CokxjLjghsdX2UKGgGaAloD0MI22tB743RI8CUhpRSlGgVTegDaBZHQKicVXYlIEt1fZQoaAZoCWgPQwjMYIxIFEhOwJSGlFKUaBVN6ANoFkdAqJ0OxnnMdXV9lChoBmgJaA9DCL5p+uyAtVDAlIaUUpRoFU3oA2gWR0CooTYDDCP7dX2UKGgGaAloD0MI6/8c5svzO8CUhpRSlGgVTegDaBZHQKiib+wTufF1fZQoaAZoCWgPQwgTQ3IycRdWwJSGlFKUaBVN6ANoFkdAqKkb4tYjjnV9lChoBmgJaA9DCM0C7Q4prkvAlIaUUpRoFU3oA2gWR0CoqiEzXSSedX2UKGgGaAloD0MIY2GInL4yN8CUhpRSlGgVTegDaBZHQKiqfZ4fOlh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 30469, "buffer_size": 1000000, "batch_size": 32, "learning_starts": 50000, "tau": 1.0, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x7f367a51cb80>", "add": "<function ReplayBuffer.add at 0x7f367a51cc10>", "sample": "<function ReplayBuffer.sample at 0x7f367a51cca0>", "_get_samples": "<function ReplayBuffer._get_samples at 0x7f367a51cd30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f367a5243f0>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "actor": null, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.05, "exploration_fraction": 0.1, "target_update_interval": 625, "_n_calls": 125000, "max_grad_norm": 10, "exploration_rate": 0.05, "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVZwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLBEsTQyxkAXwAGACIAWsEchCIAFMAiAJkAXwAGACIAIgCGAAUAIgBGwAXAFMAZABTAJROSwGGlCmMEnByb2dyZXNzX3JlbWFpbmluZ5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy44L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLcEMGAAEMAQQClIwDZW5klIwMZW5kX2ZyYWN0aW9ulIwFc3RhcnSUh5QpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy44L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB0pUpRoHSlSlIeUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgjfZR9lChoGGgNjAxfX3F1YWxuYW1lX1+UjBtnZXRfbGluZWFyX2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQoaAqMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoL3WMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgZjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+pmZmZmZmahZRSlGg3Rz+5mZmZmZmahZRSlGg3Rz/wAAAAAAAAhZRSlIeUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f4d642cc1f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4d642cc280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4d642cc310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4d642cc3a0>", "_build": "<function ActorCriticPolicy._build at 0x7f4d642cc430>", "forward": "<function ActorCriticPolicy.forward at 0x7f4d642cc4c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4d642cc550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4d642cc5e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f4d642cc670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4d642cc700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4d642cc790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4d642cc820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f4d642c6870>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAAAAAgN4FEmLP3XlpXk+dNuDVhDdoUmTV4dL37JBGfubmtJ8K/yta05R2VDNIKgyIgoEeBwLHkehyUA57Gggco6lRS70KPpf4dzmTv80VqRD4UOQVfQoXPSBCu0aPahC/z7d7cKnq4foqCVFberx6HmqvNeg1uLo060hG1EVL1fj4jnxur+mtJzvQcDL9RWkQdLmtJad7f89l51Bsj9SHMvTMnEWiqqu4VGGiM82OPQotwZwBqH+XozoTq2VTXAJCBeDxqvNzRB9RDQNpjCkFavxAnr3N+GFmXCgczXeiOmNwvV/fXXLUZ3KPpOPsT/VKXu+YraRRenn1RTLfIVIFRy2aNgdksCD75dluHso0RhX0Q7/yIMMA1KC9H1ibWLHhB0/a/LpLip1LhfiLgP7OyjSdKBgN/XP4h+Gmv+aHVdO7IkjwC3p4TlmEljEw1KlWPys4HqmsKOa45F3XoCraFL/Dd5+w1hK3Sz5R2rUVSVbSUOsfHbRKOMb2sSdGKeROXp+UDa3Mk5BKTJ4IDtNx/wPK06D6DFelDUV8UaTi7N743QeYLV8v6WMqB9DF+o2eX3b/8QxVD6SOsEt15XvhshEq7HNiOchcSUx5AQDMecyBqkAVLADU2XFx4tjJt7aOms/oR3YltP6jJcHzi0VN5DAE9iCiJ2Zvh+y5FvCSkvQX2rQtYlfC3QUqhpX/h4xEXAQ95C1WGX9cLJVnChqFv/eFRtoVvtBP1Cgupwz3jLV8HvMz6kAQH9xgJ2GJOhBq3DFeenMnpnek4XudyuGpjGvewS4bTZc1tI9xxGA+eZHINFgc6i9MACgyWYXTRyR3iOOpjtc/MG3T+qMMkRLftynDO3JTlYcMjrX1ORkmsaQKxBoqTgt5livKYZr/gznXuUe7F5FWKd2w/EZUuImjPPPbktdiTXOC2azhuJAIAMnzh1Y/VfaXBGClKHSqbO9zPAwm2xWbn0LXulho82d1untFQ0OIiqcG1jcNHX6RXKjhRo30WqKmualv0CkGTswbpr8BA027CLSxIi+sDaDdhATHhxmVZRDPcIzvtJcZ/IIFFktFvg3iT2+xhKoUI4+wdw2mXqm2SLHyi/BeAZjyP4XHEUtufvOfrmhJXXtrcXVOnbqYB+z12k+5LqUc6uusY3LL3A4o2nxZXHCQaNQzt8LIU/SLwZjUNww25rO47CGFarYtZMCokzYWWO87Y6Wyfm9tBt1nWFUwTwZoxV3sPB2f5hx2/APeIjlOQ3gbErfvvmLy5Sophezaan/IS7asN+69AoKuvb4wSRHkAVvLXpkXq4fS+29uLpc+7yDkpyWYmsd/+txedaKOpRbaLqY1T8seNvCGP16ZRMVXa5+vKDZpxflSFp3d1mlUoG340cbjEjHYhI/xzLSVlFZWbMX/Q6ulEP6sRO2eMGgdaQ+Cfa2Fj0702Y4RCLUJv92BV8VOmWQDbsUuNnhcQzElCcjxPoWk2gfL2GN1ssi91EIjzKRgs2BuB82atbUYU58uRBGuECnDgdBlnccchycjijxK9rb3HACjoDmcsXs3hcSobzDzBb/9PQgCBq2g+MtpBiIKGSMA3DMM3E0/GtA4i0Omt3jxs6jKPuIE8F0Dw56XuMcFFiTHtcbiyokjisAgtsOXlh8DMlbYJ3Qkqfn20JDjm2MddM+vcP28fmtTXPU3HT20DswDL1GPxrCEsuw/xZKh0uPCeH7n4FSXFfnJ/EH5D7rGX0IgkzRpLsyBfJWGS0cFp7vbF0doiH+jIrrQlfvC89bxOcPvMrz8IIZwKgobZ3DzgqT5Cyvku2d9YUKPHNqKTMZlhKL4WAHq/TF/9LpqQi+b+sw5R+mBvj4csW/8xTvQOQLwjNv2OPy2DyFILg0Kc9cP/lMI9uCpmHH+FdfXCfjwKaRGmd5Le5Hz23inCM9iuMy0nwWMYhkzgXD17JQIaXcOSI/iTld8dy3RB8Kf6PmfKG+4tECAKpxdQFoSQLi5X2apfu3M2VMyK0Lc843TyybAtNruRYSkb8iZUGpeTnUVviCAJwuth+r/2h6uHB8YSXT25wBUS7OWGETkMYkL/hr4lQFSh8Ljc0AGHea0G0wqIGOXRTp2SEKPA4Jt8lrFXGgeNLEwl/jJLTOOcfTFZ9khyTRZFL8VNA2IzTHsPokUR48NRlZbaAjyABgUuKvd3jt2v39kcwmF4Q4IgPP1AEjPqgAYKexDNnA0NiW3JixVQ+rWa0gBCQuhiwRTTOxkMpoL/FMEKoyi8LhFw7xg+0cU6tuyGUc6M9CjMe3gDjvKFxzNl9O2PhHMD7mMt6hN6QcvXUYjMEotU6+jQr+ZoPv3zh8AUnCpEbL9P8d8Sb1EqLpdEJYZ30ZW98/CT+QgwJnQTu4t0uQdGiUW2XSlcFTUk4NiXHO2t1Kf/MB+8GMMaF0H6zl8XJHBarip9Rv8IP94PfzbnOXnSjbS8qRnytbt2dhmCENWg+iJaMMy80jg4PSqF/BJAfF/wUvgBF0jeElRPczWppvDLq7sXVKiwW6I9yd+bWz2HIpY5NTnBPzFzJQaYU1VkHe3ZwKZ5NM2rnQXWGfjXLY4iGSsZO9DJ4BsFOnuGVF+YeF9jTlsecAH7XFnFlX4ks/DnxeXr4agwwCT0Sv1HyAjkUuSC/WRrbPONI/r25vU7xJxj3D1Meyf4qNjZ+Y0m7Y6wWmq1S+CJ4sXZkgUAvXdvMGdqcAxkJj32UEa/ugqr+HozekgJvY6mAeguhenBQUNyf1ppf4K7c+FUGC/smd83qh9AaRS9gNJ7bLp5VWLqyN/LNbIQTdaeRjWrN1KOTrQcZzIs3Ormx56eazLhiuETGEnUL9abTBUag4vR5YtwUxiDIPv23r1feTyTBakZaI0fZwMNmcQrBovWHrHQMQEulgZsuhLoqYOQD6smanGb1wwguCvNSRBxvHdDzYSufWjikJ+z6ZfWaVyngRdLJIirYLp57aQVpciTtsElTudaqIvhi7jDuhVxdAQxVWXLu7sd93WHJtKnt+4bMZwTUuMAl6hE7003v+4BRDp/2zMouvhy0N7CTpdOFGPIxQlc5R/BjqgGP9TVfHirMNQ7h3i1VSpvsC/QqlvLIrG+P5Az+BTgdVpcxkBXYIudbhyg9BKp2KGpSSIahQjqFj3sBew0MbILSBvrK8UBersw8k5ZCMjmCyZk/BQsHapedbldsmK1nVnmWLq/MdF+aKWnbxNKbp5LbatNcBGA00GnRubzrTQoIrJmAYPhdqK1F0Z2QHCIW+jo+GRSfoWgEy8VMc+smSDXzebFkbT97pCGpHlnuOlhadOqP/Lw7AOVZHMPvW88ZJXlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 16, "num_timesteps": 2015232, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": 191, "action_noise": null, "start_time": 1677918357452940605, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOtUr3D8BM9KlsePp3a7b5j6cQ9VoawPQAAAAAAAAAAmrmAvLge1zy6Xj48EOnEviHE3z0Ks/W6AAAAAAAAAACa1ha9Nm5/vLZ91D3DqDS9rSvZvayxjr4AAIA/AACAPwAjgzwhu6U/ardIPgoSPb/JXa87pt/dPAAAAAAAAAAAzb4nPOz5ibnPJaE9fFb4scqWOzr+CwC0AACAPwAAgD+GmHw+m3y3Pu7iBb8UiuW+D6jZPbLxf74AAAAAAAAAAEAp9L0Um2U+C34LP/JzAr+xVTw+LYNmPgAAAAAAAAAAOkxHPkOMij4aKYi+RUfAvjVegD6OthK+AAAAAAAAAAAAabu95fv4PgUT0z3CdxG/B1sMvke7yj0AAAAAAAAAAOamWL17PrC6kSc3uFvjxrfPE0s5M0F8NwAAgD8AAIA/GkUCvQ8gBj2C0V4+j1SqvmiDmj4KgMM8AAAAAAAAAAC60CK+mOG4Pw6bAr+WjqW+qsCnvsqqqb4AAAAAAAAAAACF7LzhYIG6IrVUPc5uo7DvQgu6jf3QswAAgD8AAIA/7RlAPv7CST9qSYk+SRQuv30bmj4m7dg9AAAAAAAAAAAz1Q29XAMnuohI37rNxvy18Kp9uni1ADoAAAAAAAAAAJq85bw+JJs/Gus0vmISN78rTZO9Xk9qvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6uv5muVddECUhpRSlIwBbJRLt4wBdJRHQLHwHxkupS91fZQoaAZoCWgPQwjhCFIpdo5FQJSGlFKUaBVLV2gWR0Cx8CdOymhudX2UKGgGaAloD0MIOfJAZBFOckCUhpRSlGgVS59oFkdAsfBG/0ulGnV9lChoBmgJaA9DCIuKOJ3k33NAlIaUUpRoFUvSaBZHQLHwU2rGR3h1fZQoaAZoCWgPQwjsaYe/JmRzQJSGlFKUaBVLuGgWR0Cx8F8zQ/ordX2UKGgGaAloD0MIzsXf9oR3ckCUhpRSlGgVS5FoFkdAsfBkR8MNMHV9lChoBmgJaA9DCFQcB17tzHJAlIaUUpRoFUvLaBZHQLHwZuMuOCJ1fZQoaAZoCWgPQwirQZjb/cJxQJSGlFKUaBVLmGgWR0Cx8LWXLNfPdX2UKGgGaAloD0MID9O+ub9oc0CUhpRSlGgVS8xoFkdAsfDNAyEcsHV9lChoBmgJaA9DCHl1jgHZNXJAlIaUUpRoFUuraBZHQLHw0PbO/tZ1fZQoaAZoCWgPQwgGggAZ+vlyQJSGlFKUaBVLq2gWR0Cx8NiVrylOdX2UKGgGaAloD0MIN8e5TbhdcUCUhpRSlGgVS6doFkdAsfDdUyYXwnV9lChoBmgJaA9DCEph3uMM8HBAlIaUUpRoFUutaBZHQLHxEFKTSst1fZQoaAZoCWgPQwjeVKTC2KFzQJSGlFKUaBVLrWgWR0Cx8Q/NA1NydX2UKGgGaAloD0MI2UC62DSAc0CUhpRSlGgVS9FoFkdAsgz+KUFB6nV9lChoBmgJaA9DCKqezD96T3FAlIaUUpRoFUuqaBZHQLINHRjBl+V1fZQoaAZoCWgPQwj04O6sXWtvQJSGlFKUaBVLo2gWR0CyDTec6NlzdX2UKGgGaAloD0MITBx5IDJ7b0CUhpRSlGgVS6xoFkdAsg0/KYAsCnV9lChoBmgJaA9DCJnyIajaQ3RAlIaUUpRoFUunaBZHQLINcWdVea91fZQoaAZoCWgPQwgLfbCMTTpyQJSGlFKUaBVLvGgWR0CyDYIN/e+FdX2UKGgGaAloD0MIU+i8xq6VcECUhpRSlGgVS7poFkdAsg2bixVyWHV9lChoBmgJaA9DCEGd8ujG5HFAlIaUUpRoFUvUaBZHQLINxp6yB091fZQoaAZoCWgPQwhPAptz8IR0QJSGlFKUaBVL2WgWR0CyDe5a7mMgdX2UKGgGaAloD0MIFK+ytqmGcUCUhpRSlGgVS65oFkdAsg4rA1vVE3V9lChoBmgJaA9DCMEb0qhA/XBAlIaUUpRoFUvOaBZHQLIOR7gKnel1fZQoaAZoCWgPQwjj/iPTIcZyQJSGlFKUaBVLzGgWR0CyDmDsQd0adX2UKGgGaAloD0MI7UYf80HgcECUhpRSlGgVS5NoFkdAsg6EWGh24nV9lChoBmgJaA9DCLPSpBS0cHJAlIaUUpRoFUu8aBZHQLIOh4b0e2d1fZQoaAZoCWgPQwhpcFtbeAdzQJSGlFKUaBVL2WgWR0CyDobpeNT+dX2UKGgGaAloD0MIcY46Om6EcECUhpRSlGgVS71oFkdAsg6JTQ3PzHV9lChoBmgJaA9DCDdUjPP3fHRAlIaUUpRoFUviaBZHQLIOkKtxMnJ1fZQoaAZoCWgPQwgiUP2DiNlxQJSGlFKUaBVLumgWR0CyDpHmFJxvdX2UKGgGaAloD0MIC2MLQc7Qc0CUhpRSlGgVS8RoFkdAsg683n6l+HV9lChoBmgJaA9DCGYRiq2g9U5AlIaUUpRoFUuDaBZHQLIOw19v0iB1fZQoaAZoCWgPQwgpsWt7u75xQJSGlFKUaBVLuGgWR0CyDsmaDwpfdX2UKGgGaAloD0MI2AsFbIeRcECUhpRSlGgVS7RoFkdAsg8NTAFgUnV9lChoBmgJaA9DCAG+27xxRnNAlIaUUpRoFUueaBZHQLIPHK15Sm91fZQoaAZoCWgPQwhN+KV+3gRzQJSGlFKUaBVLqGgWR0CyD1ldC3PSdX2UKGgGaAloD0MItW6D2m+4ckCUhpRSlGgVS+JoFkdAsg9jYqXnhnV9lChoBmgJaA9DCCaL+4/MOHJAlIaUUpRoFUulaBZHQLIPtUXpGF11fZQoaAZoCWgPQwjxLhfxXbpxQJSGlFKUaBVLmGgWR0CyD8QpazNVdX2UKGgGaAloD0MIFXMQdDTxcECUhpRSlGgVS5toFkdAsg/H7hvR7nV9lChoBmgJaA9DCKHa4EQ0/HNAlIaUUpRoFUvJaBZHQLIP1qTKT0R1fZQoaAZoCWgPQwgCDqFKTYZwQJSGlFKUaBVLpWgWR0CyD+QN5MURdX2UKGgGaAloD0MINZawNgZIcUCUhpRSlGgVS6RoFkdAsg/tqgyuZHV9lChoBmgJaA9DCONTAIwn63BAlIaUUpRoFUuoaBZHQLIP7eANG3F1fZQoaAZoCWgPQwikVMIT+vdyQJSGlFKUaBVLp2gWR0CyD/j6rNnodX2UKGgGaAloD0MIEYyDS4dGc0CUhpRSlGgVS9loFkdAshAacUdq+XV9lChoBmgJaA9DCPm9TX+2nHFAlIaUUpRoFUuyaBZHQLIQRHryDqZ1fZQoaAZoCWgPQwiOW8zPDddzQJSGlFKUaBVLvmgWR0CyEGO1fE4vdX2UKGgGaAloD0MIXoO+9PZHc0CUhpRSlGgVS8NoFkdAshB1fNRm9XV9lChoBmgJaA9DCIs3Mo/8qHNAlIaUUpRoFUu4aBZHQLIQpJEH+qB1fZQoaAZoCWgPQwhGeeblsFtvQJSGlFKUaBVLmWgWR0CyEKgKfFrEdX2UKGgGaAloD0MIiQlq+BaZc0CUhpRSlGgVS7hoFkdAshD1jLB9C3V9lChoBmgJaA9DCOJbWDdeLHJAlIaUUpRoFUvbaBZHQLIRCIj4YaZ1fZQoaAZoCWgPQwh1sWmlkNxxQJSGlFKUaBVLnGgWR0CyERwiV0LddX2UKGgGaAloD0MIFy6rsBn6ckCUhpRSlGgVS61oFkdAshFUILPUrnV9lChoBmgJaA9DCOp3YWv2L3FAlIaUUpRoFUupaBZHQLIRW+I/JNl1fZQoaAZoCWgPQwjKqDKM+z5xQJSGlFKUaBVLvGgWR0CyEWnqFAVxdX2UKGgGaAloD0MItr+zPfqacECUhpRSlGgVS6xoFkdAshGB1U2kz3V9lChoBmgJaA9DCBi1+1UAxXJAlIaUUpRoFUveaBZHQLIRk2g39751fZQoaAZoCWgPQwhFLjiDv9FRQJSGlFKUaBVLbmgWR0CyEZYczZYgdX2UKGgGaAloD0MIMPXzpmJAcUCUhpRSlGgVS8poFkdAshGaBbwBo3V9lChoBmgJaA9DCFg6H54lYnBAlIaUUpRoFUumaBZHQLIRpjLSuyN1fZQoaAZoCWgPQwjgZYaNsrhyQJSGlFKUaBVL7mgWR0CyEeI/mknDdX2UKGgGaAloD0MIFk1nJ0M5c0CUhpRSlGgVTQoBaBZHQLIR+25hBqt1fZQoaAZoCWgPQwgv98lRgHpyQJSGlFKUaBVL5GgWR0CyEkprk8zRdX2UKGgGaAloD0MIDThLyfIHdECUhpRSlGgVS8hoFkdAshJQ5BC2MXV9lChoBmgJaA9DCBlW8UamYXFAlIaUUpRoFUuzaBZHQLIScY9Pk7x1fZQoaAZoCWgPQwhbCkj7n1hvQJSGlFKUaBVLqGgWR0CyEnuzIFNddX2UKGgGaAloD0MIVI7J4n50cUCUhpRSlGgVS7RoFkdAshKB6kZaV3V9lChoBmgJaA9DCNGRXP6DZHNAlIaUUpRoFUu3aBZHQLIS1SZjQRh1fZQoaAZoCWgPQwinlq31BThxQJSGlFKUaBVLrmgWR0CyEthUipvQdX2UKGgGaAloD0MIT3XIzbDqcECUhpRSlGgVS5xoFkdAshLvB42S+3V9lChoBmgJaA9DCPIJ2Xlb1XFAlIaUUpRoFUusaBZHQLIS/UWVNYd1fZQoaAZoCWgPQwietHBZhWdxQJSGlFKUaBVLxmgWR0CyEvzxoZhsdX2UKGgGaAloD0MIob/QIwaxcUCUhpRSlGgVS69oFkdAshMH1wo9cXV9lChoBmgJaA9DCEfKFkl7CXNAlIaUUpRoFUvEaBZHQLITILIgeRx1fZQoaAZoCWgPQwgLYTWW8KxxQJSGlFKUaBVLqmgWR0CyE0rjtG/fdX2UKGgGaAloD0MIIeaSqu3PckCUhpRSlGgVS89oFkdAshNNbUwztXV9lChoBmgJaA9DCDPd66R+MHJAlIaUUpRoFUunaBZHQLITXONHYpV1fZQoaAZoCWgPQwiWmGclrRw/QJSGlFKUaBVLX2gWR0CyE6V85S3tdX2UKGgGaAloD0MITTJyFvYecUCUhpRSlGgVS6BoFkdAshOqLNwBHXV9lChoBmgJaA9DCBvXv+vzbXBAlIaUUpRoFUunaBZHQLITrfZ26kJ1fZQoaAZoCWgPQwjjwoGQbBVyQJSGlFKUaBVLtmgWR0CyE6yXhOxjdX2UKGgGaAloD0MIjKIHPobJb0CUhpRSlGgVS8RoFkdAshO7BDXvpnV9lChoBmgJaA9DCE35EFSNMExAlIaUUpRoFUt+aBZHQLIT45vcafl1fZQoaAZoCWgPQwj3ViQm6KZxQJSGlFKUaBVL0mgWR0CyE+7y1/lRdX2UKGgGaAloD0MIsFQX8PKfcUCUhpRSlGgVS7FoFkdAshP5B4Uvf3V9lChoBmgJaA9DCC0I5X0cBHFAlIaUUpRoFUuvaBZHQLIUGMvh60J1fZQoaAZoCWgPQwgapUv/0hBzQJSGlFKUaBVLuWgWR0CyFCCuloDgdX2UKGgGaAloD0MIn8vUJHi1S0CUhpRSlGgVS5FoFkdAshQoHD766HV9lChoBmgJaA9DCM43onuWn3NAlIaUUpRoFUvIaBZHQLIUK3wCr951fZQoaAZoCWgPQwiKARJNYAVzQJSGlFKUaBVL2mgWR0CyFDV/lQuVdX2UKGgGaAloD0MISn7Er5gBckCUhpRSlGgVS7loFkdAshRRWOp84XV9lChoBmgJaA9DCFOzB1oBxXFAlIaUUpRoFUvHaBZHQLIUYhScbzd1fZQoaAZoCWgPQwiemPViqKpxQJSGlFKUaBVLoGgWR0CyFHmH58BudX2UKGgGaAloD0MIDVTGv49VcUCUhpRSlGgVS69oFkdAshSSjYZl4HV9lChoBmgJaA9DCMU7wJPWDnFAlIaUUpRoFUu8aBZHQLIUpqkdmxt1fZQoaAZoCWgPQwjjqUcaXHhyQJSGlFKUaBVLwmgWR0CyFLBCtzS1dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1230, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 32, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:509a95f11f50cf701eb12ad8e49048010870226a38e218f4cfd5d9f67560a00d
|
3 |
+
size 150955
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
@@ -36,58 +36,58 @@
|
|
36 |
},
|
37 |
"action_space": {
|
38 |
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
-
":serialized:": "
|
40 |
"n": 4,
|
41 |
"_shape": [],
|
42 |
"dtype": "int64",
|
43 |
-
"_np_random":
|
44 |
},
|
45 |
"n_envs": 16,
|
46 |
-
"num_timesteps":
|
47 |
-
"_total_timesteps":
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
-
"seed":
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
55 |
":type:": "<class 'function'>",
|
56 |
-
":serialized:": "
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
64 |
-
":serialized:": "
|
65 |
},
|
66 |
"_last_original_obs": null,
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
-
"_current_progress_remaining": -
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
-
"_n_updates":
|
80 |
"n_steps": 1024,
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
83 |
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
-
"batch_size":
|
87 |
-
"n_epochs":
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
-
":serialized:": "
|
91 |
},
|
92 |
"clip_range_vf": null,
|
93 |
"normalize_advantage": true,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f4d642cc1f0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f4d642cc280>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f4d642cc310>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f4d642cc3a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f4d642cc430>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f4d642cc4c0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7f4d642cc550>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f4d642cc5e0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f4d642cc670>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f4d642cc700>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f4d642cc790>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f4d642cc820>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7f4d642c6870>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
|
|
36 |
},
|
37 |
"action_space": {
|
38 |
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVLwsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAAAAAgN4FEmLP3XlpXk+dNuDVhDdoUmTV4dL37JBGfubmtJ8K/yta05R2VDNIKgyIgoEeBwLHkehyUA57Gggco6lRS70KPpf4dzmTv80VqRD4UOQVfQoXPSBCu0aPahC/z7d7cKnq4foqCVFberx6HmqvNeg1uLo060hG1EVL1fj4jnxur+mtJzvQcDL9RWkQdLmtJad7f89l51Bsj9SHMvTMnEWiqqu4VGGiM82OPQotwZwBqH+XozoTq2VTXAJCBeDxqvNzRB9RDQNpjCkFavxAnr3N+GFmXCgczXeiOmNwvV/fXXLUZ3KPpOPsT/VKXu+YraRRenn1RTLfIVIFRy2aNgdksCD75dluHso0RhX0Q7/yIMMA1KC9H1ibWLHhB0/a/LpLip1LhfiLgP7OyjSdKBgN/XP4h+Gmv+aHVdO7IkjwC3p4TlmEljEw1KlWPys4HqmsKOa45F3XoCraFL/Dd5+w1hK3Sz5R2rUVSVbSUOsfHbRKOMb2sSdGKeROXp+UDa3Mk5BKTJ4IDtNx/wPK06D6DFelDUV8UaTi7N743QeYLV8v6WMqB9DF+o2eX3b/8QxVD6SOsEt15XvhshEq7HNiOchcSUx5AQDMecyBqkAVLADU2XFx4tjJt7aOms/oR3YltP6jJcHzi0VN5DAE9iCiJ2Zvh+y5FvCSkvQX2rQtYlfC3QUqhpX/h4xEXAQ95C1WGX9cLJVnChqFv/eFRtoVvtBP1Cgupwz3jLV8HvMz6kAQH9xgJ2GJOhBq3DFeenMnpnek4XudyuGpjGvewS4bTZc1tI9xxGA+eZHINFgc6i9MACgyWYXTRyR3iOOpjtc/MG3T+qMMkRLftynDO3JTlYcMjrX1ORkmsaQKxBoqTgt5livKYZr/gznXuUe7F5FWKd2w/EZUuImjPPPbktdiTXOC2azhuJAIAMnzh1Y/VfaXBGClKHSqbO9zPAwm2xWbn0LXulho82d1untFQ0OIiqcG1jcNHX6RXKjhRo30WqKmualv0CkGTswbpr8BA027CLSxIi+sDaDdhATHhxmVZRDPcIzvtJcZ/IIFFktFvg3iT2+xhKoUI4+wdw2mXqm2SLHyi/BeAZjyP4XHEUtufvOfrmhJXXtrcXVOnbqYB+z12k+5LqUc6uusY3LL3A4o2nxZXHCQaNQzt8LIU/SLwZjUNww25rO47CGFarYtZMCokzYWWO87Y6Wyfm9tBt1nWFUwTwZoxV3sPB2f5hx2/APeIjlOQ3gbErfvvmLy5Sophezaan/IS7asN+69AoKuvb4wSRHkAVvLXpkXq4fS+29uLpc+7yDkpyWYmsd/+txedaKOpRbaLqY1T8seNvCGP16ZRMVXa5+vKDZpxflSFp3d1mlUoG340cbjEjHYhI/xzLSVlFZWbMX/Q6ulEP6sRO2eMGgdaQ+Cfa2Fj0702Y4RCLUJv92BV8VOmWQDbsUuNnhcQzElCcjxPoWk2gfL2GN1ssi91EIjzKRgs2BuB82atbUYU58uRBGuECnDgdBlnccchycjijxK9rb3HACjoDmcsXs3hcSobzDzBb/9PQgCBq2g+MtpBiIKGSMA3DMM3E0/GtA4i0Omt3jxs6jKPuIE8F0Dw56XuMcFFiTHtcbiyokjisAgtsOXlh8DMlbYJ3Qkqfn20JDjm2MddM+vcP28fmtTXPU3HT20DswDL1GPxrCEsuw/xZKh0uPCeH7n4FSXFfnJ/EH5D7rGX0IgkzRpLsyBfJWGS0cFp7vbF0doiH+jIrrQlfvC89bxOcPvMrz8IIZwKgobZ3DzgqT5Cyvku2d9YUKPHNqKTMZlhKL4WAHq/TF/9LpqQi+b+sw5R+mBvj4csW/8xTvQOQLwjNv2OPy2DyFILg0Kc9cP/lMI9uCpmHH+FdfXCfjwKaRGmd5Le5Hz23inCM9iuMy0nwWMYhkzgXD17JQIaXcOSI/iTld8dy3RB8Kf6PmfKG+4tECAKpxdQFoSQLi5X2apfu3M2VMyK0Lc843TyybAtNruRYSkb8iZUGpeTnUVviCAJwuth+r/2h6uHB8YSXT25wBUS7OWGETkMYkL/hr4lQFSh8Ljc0AGHea0G0wqIGOXRTp2SEKPA4Jt8lrFXGgeNLEwl/jJLTOOcfTFZ9khyTRZFL8VNA2IzTHsPokUR48NRlZbaAjyABgUuKvd3jt2v39kcwmF4Q4IgPP1AEjPqgAYKexDNnA0NiW3JixVQ+rWa0gBCQuhiwRTTOxkMpoL/FMEKoyi8LhFw7xg+0cU6tuyGUc6M9CjMe3gDjvKFxzNl9O2PhHMD7mMt6hN6QcvXUYjMEotU6+jQr+ZoPv3zh8AUnCpEbL9P8d8Sb1EqLpdEJYZ30ZW98/CT+QgwJnQTu4t0uQdGiUW2XSlcFTUk4NiXHO2t1Kf/MB+8GMMaF0H6zl8XJHBarip9Rv8IP94PfzbnOXnSjbS8qRnytbt2dhmCENWg+iJaMMy80jg4PSqF/BJAfF/wUvgBF0jeElRPczWppvDLq7sXVKiwW6I9yd+bWz2HIpY5NTnBPzFzJQaYU1VkHe3ZwKZ5NM2rnQXWGfjXLY4iGSsZO9DJ4BsFOnuGVF+YeF9jTlsecAH7XFnFlX4ks/DnxeXr4agwwCT0Sv1HyAjkUuSC/WRrbPONI/r25vU7xJxj3D1Meyf4qNjZ+Y0m7Y6wWmq1S+CJ4sXZkgUAvXdvMGdqcAxkJj32UEa/ugqr+HozekgJvY6mAeguhenBQUNyf1ppf4K7c+FUGC/smd83qh9AaRS9gNJ7bLp5VWLqyN/LNbIQTdaeRjWrN1KOTrQcZzIs3Ormx56eazLhiuETGEnUL9abTBUag4vR5YtwUxiDIPv23r1feTyTBakZaI0fZwMNmcQrBovWHrHQMQEulgZsuhLoqYOQD6smanGb1wwguCvNSRBxvHdDzYSufWjikJ+z6ZfWaVyngRdLJIirYLp57aQVpciTtsElTudaqIvhi7jDuhVxdAQxVWXLu7sd93WHJtKnt+4bMZwTUuMAl6hE7003v+4BRDp/2zMouvhy0N7CTpdOFGPIxQlc5R/BjqgGP9TVfHirMNQ7h3i1VSpvsC/QqlvLIrG+P5Az+BTgdVpcxkBXYIudbhyg9BKp2KGpSSIahQjqFj3sBew0MbILSBvrK8UBersw8k5ZCMjmCyZk/BQsHapedbldsmK1nVnmWLq/MdF+aKWnbxNKbp5LbatNcBGA00GnRubzrTQoIrJmAYPhdqK1F0Z2QHCIW+jo+GRSfoWgEy8VMc+smSDXzebFkbT97pCGpHlnuOlhadOqP/Lw7AOVZHMPvW88ZJXlGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RNcAJ1jAloYXNfZ2F1c3OUSwCMBWdhdXNzlEcAAAAAAAAAAHVidWIu",
|
40 |
"n": 4,
|
41 |
"_shape": [],
|
42 |
"dtype": "int64",
|
43 |
+
"_np_random": "RandomState(MT19937)"
|
44 |
},
|
45 |
"n_envs": 16,
|
46 |
+
"num_timesteps": 2015232,
|
47 |
+
"_total_timesteps": 2000000,
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": 191,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1677918357452940605,
|
52 |
"learning_rate": 0.0003,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
55 |
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADOtUr3D8BM9KlsePp3a7b5j6cQ9VoawPQAAAAAAAAAAmrmAvLge1zy6Xj48EOnEviHE3z0Ks/W6AAAAAAAAAACa1ha9Nm5/vLZ91D3DqDS9rSvZvayxjr4AAIA/AACAPwAjgzwhu6U/ardIPgoSPb/JXa87pt/dPAAAAAAAAAAAzb4nPOz5ibnPJaE9fFb4scqWOzr+CwC0AACAPwAAgD+GmHw+m3y3Pu7iBb8UiuW+D6jZPbLxf74AAAAAAAAAAEAp9L0Um2U+C34LP/JzAr+xVTw+LYNmPgAAAAAAAAAAOkxHPkOMij4aKYi+RUfAvjVegD6OthK+AAAAAAAAAAAAabu95fv4PgUT0z3CdxG/B1sMvke7yj0AAAAAAAAAAOamWL17PrC6kSc3uFvjxrfPE0s5M0F8NwAAgD8AAIA/GkUCvQ8gBj2C0V4+j1SqvmiDmj4KgMM8AAAAAAAAAAC60CK+mOG4Pw6bAr+WjqW+qsCnvsqqqb4AAAAAAAAAAACF7LzhYIG6IrVUPc5uo7DvQgu6jf3QswAAgD8AAIA/7RlAPv7CST9qSYk+SRQuv30bmj4m7dg9AAAAAAAAAAAz1Q29XAMnuohI37rNxvy18Kp9uni1ADoAAAAAAAAAAJq85bw+JJs/Gus0vmISN78rTZO9Xk9qvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
},
|
66 |
"_last_original_obs": null,
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.007616000000000067,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI6uv5muVddECUhpRSlIwBbJRLt4wBdJRHQLHwHxkupS91fZQoaAZoCWgPQwjhCFIpdo5FQJSGlFKUaBVLV2gWR0Cx8CdOymhudX2UKGgGaAloD0MIOfJAZBFOckCUhpRSlGgVS59oFkdAsfBG/0ulGnV9lChoBmgJaA9DCIuKOJ3k33NAlIaUUpRoFUvSaBZHQLHwU2rGR3h1fZQoaAZoCWgPQwjsaYe/JmRzQJSGlFKUaBVLuGgWR0Cx8F8zQ/ordX2UKGgGaAloD0MIzsXf9oR3ckCUhpRSlGgVS5FoFkdAsfBkR8MNMHV9lChoBmgJaA9DCFQcB17tzHJAlIaUUpRoFUvLaBZHQLHwZuMuOCJ1fZQoaAZoCWgPQwirQZjb/cJxQJSGlFKUaBVLmGgWR0Cx8LWXLNfPdX2UKGgGaAloD0MID9O+ub9oc0CUhpRSlGgVS8xoFkdAsfDNAyEcsHV9lChoBmgJaA9DCHl1jgHZNXJAlIaUUpRoFUuraBZHQLHw0PbO/tZ1fZQoaAZoCWgPQwgGggAZ+vlyQJSGlFKUaBVLq2gWR0Cx8NiVrylOdX2UKGgGaAloD0MIN8e5TbhdcUCUhpRSlGgVS6doFkdAsfDdUyYXwnV9lChoBmgJaA9DCEph3uMM8HBAlIaUUpRoFUutaBZHQLHxEFKTSst1fZQoaAZoCWgPQwjeVKTC2KFzQJSGlFKUaBVLrWgWR0Cx8Q/NA1NydX2UKGgGaAloD0MI2UC62DSAc0CUhpRSlGgVS9FoFkdAsgz+KUFB6nV9lChoBmgJaA9DCKqezD96T3FAlIaUUpRoFUuqaBZHQLINHRjBl+V1fZQoaAZoCWgPQwj04O6sXWtvQJSGlFKUaBVLo2gWR0CyDTec6NlzdX2UKGgGaAloD0MITBx5IDJ7b0CUhpRSlGgVS6xoFkdAsg0/KYAsCnV9lChoBmgJaA9DCJnyIajaQ3RAlIaUUpRoFUunaBZHQLINcWdVea91fZQoaAZoCWgPQwgLfbCMTTpyQJSGlFKUaBVLvGgWR0CyDYIN/e+FdX2UKGgGaAloD0MIU+i8xq6VcECUhpRSlGgVS7poFkdAsg2bixVyWHV9lChoBmgJaA9DCEGd8ujG5HFAlIaUUpRoFUvUaBZHQLINxp6yB091fZQoaAZoCWgPQwhPAptz8IR0QJSGlFKUaBVL2WgWR0CyDe5a7mMgdX2UKGgGaAloD0MIFK+ytqmGcUCUhpRSlGgVS65oFkdAsg4rA1vVE3V9lChoBmgJaA9DCMEb0qhA/XBAlIaUUpRoFUvOaBZHQLIOR7gKnel1fZQoaAZoCWgPQwjj/iPTIcZyQJSGlFKUaBVLzGgWR0CyDmDsQd0adX2UKGgGaAloD0MI7UYf80HgcECUhpRSlGgVS5NoFkdAsg6EWGh24nV9lChoBmgJaA9DCLPSpBS0cHJAlIaUUpRoFUu8aBZHQLIOh4b0e2d1fZQoaAZoCWgPQwhpcFtbeAdzQJSGlFKUaBVL2WgWR0CyDobpeNT+dX2UKGgGaAloD0MIcY46Om6EcECUhpRSlGgVS71oFkdAsg6JTQ3PzHV9lChoBmgJaA9DCDdUjPP3fHRAlIaUUpRoFUviaBZHQLIOkKtxMnJ1fZQoaAZoCWgPQwgiUP2DiNlxQJSGlFKUaBVLumgWR0CyDpHmFJxvdX2UKGgGaAloD0MIC2MLQc7Qc0CUhpRSlGgVS8RoFkdAsg683n6l+HV9lChoBmgJaA9DCGYRiq2g9U5AlIaUUpRoFUuDaBZHQLIOw19v0iB1fZQoaAZoCWgPQwgpsWt7u75xQJSGlFKUaBVLuGgWR0CyDsmaDwpfdX2UKGgGaAloD0MI2AsFbIeRcECUhpRSlGgVS7RoFkdAsg8NTAFgUnV9lChoBmgJaA9DCAG+27xxRnNAlIaUUpRoFUueaBZHQLIPHK15Sm91fZQoaAZoCWgPQwhN+KV+3gRzQJSGlFKUaBVLqGgWR0CyD1ldC3PSdX2UKGgGaAloD0MItW6D2m+4ckCUhpRSlGgVS+JoFkdAsg9jYqXnhnV9lChoBmgJaA9DCCaL+4/MOHJAlIaUUpRoFUulaBZHQLIPtUXpGF11fZQoaAZoCWgPQwjxLhfxXbpxQJSGlFKUaBVLmGgWR0CyD8QpazNVdX2UKGgGaAloD0MIFXMQdDTxcECUhpRSlGgVS5toFkdAsg/H7hvR7nV9lChoBmgJaA9DCKHa4EQ0/HNAlIaUUpRoFUvJaBZHQLIP1qTKT0R1fZQoaAZoCWgPQwgCDqFKTYZwQJSGlFKUaBVLpWgWR0CyD+QN5MURdX2UKGgGaAloD0MINZawNgZIcUCUhpRSlGgVS6RoFkdAsg/tqgyuZHV9lChoBmgJaA9DCONTAIwn63BAlIaUUpRoFUuoaBZHQLIP7eANG3F1fZQoaAZoCWgPQwikVMIT+vdyQJSGlFKUaBVLp2gWR0CyD/j6rNnodX2UKGgGaAloD0MIEYyDS4dGc0CUhpRSlGgVS9loFkdAshAacUdq+XV9lChoBmgJaA9DCPm9TX+2nHFAlIaUUpRoFUuyaBZHQLIQRHryDqZ1fZQoaAZoCWgPQwiOW8zPDddzQJSGlFKUaBVLvmgWR0CyEGO1fE4vdX2UKGgGaAloD0MIXoO+9PZHc0CUhpRSlGgVS8NoFkdAshB1fNRm9XV9lChoBmgJaA9DCIs3Mo/8qHNAlIaUUpRoFUu4aBZHQLIQpJEH+qB1fZQoaAZoCWgPQwhGeeblsFtvQJSGlFKUaBVLmWgWR0CyEKgKfFrEdX2UKGgGaAloD0MIiQlq+BaZc0CUhpRSlGgVS7hoFkdAshD1jLB9C3V9lChoBmgJaA9DCOJbWDdeLHJAlIaUUpRoFUvbaBZHQLIRCIj4YaZ1fZQoaAZoCWgPQwh1sWmlkNxxQJSGlFKUaBVLnGgWR0CyERwiV0LddX2UKGgGaAloD0MIFy6rsBn6ckCUhpRSlGgVS61oFkdAshFUILPUrnV9lChoBmgJaA9DCOp3YWv2L3FAlIaUUpRoFUupaBZHQLIRW+I/JNl1fZQoaAZoCWgPQwjKqDKM+z5xQJSGlFKUaBVLvGgWR0CyEWnqFAVxdX2UKGgGaAloD0MItr+zPfqacECUhpRSlGgVS6xoFkdAshGB1U2kz3V9lChoBmgJaA9DCBi1+1UAxXJAlIaUUpRoFUveaBZHQLIRk2g39751fZQoaAZoCWgPQwhFLjiDv9FRQJSGlFKUaBVLbmgWR0CyEZYczZYgdX2UKGgGaAloD0MIMPXzpmJAcUCUhpRSlGgVS8poFkdAshGaBbwBo3V9lChoBmgJaA9DCFg6H54lYnBAlIaUUpRoFUumaBZHQLIRpjLSuyN1fZQoaAZoCWgPQwjgZYaNsrhyQJSGlFKUaBVL7mgWR0CyEeI/mknDdX2UKGgGaAloD0MIFk1nJ0M5c0CUhpRSlGgVTQoBaBZHQLIR+25hBqt1fZQoaAZoCWgPQwgv98lRgHpyQJSGlFKUaBVL5GgWR0CyEkprk8zRdX2UKGgGaAloD0MIDThLyfIHdECUhpRSlGgVS8hoFkdAshJQ5BC2MXV9lChoBmgJaA9DCBlW8UamYXFAlIaUUpRoFUuzaBZHQLIScY9Pk7x1fZQoaAZoCWgPQwhbCkj7n1hvQJSGlFKUaBVLqGgWR0CyEnuzIFNddX2UKGgGaAloD0MIVI7J4n50cUCUhpRSlGgVS7RoFkdAshKB6kZaV3V9lChoBmgJaA9DCNGRXP6DZHNAlIaUUpRoFUu3aBZHQLIS1SZjQRh1fZQoaAZoCWgPQwinlq31BThxQJSGlFKUaBVLrmgWR0CyEthUipvQdX2UKGgGaAloD0MIT3XIzbDqcECUhpRSlGgVS5xoFkdAshLvB42S+3V9lChoBmgJaA9DCPIJ2Xlb1XFAlIaUUpRoFUusaBZHQLIS/UWVNYd1fZQoaAZoCWgPQwietHBZhWdxQJSGlFKUaBVLxmgWR0CyEvzxoZhsdX2UKGgGaAloD0MIob/QIwaxcUCUhpRSlGgVS69oFkdAshMH1wo9cXV9lChoBmgJaA9DCEfKFkl7CXNAlIaUUpRoFUvEaBZHQLITILIgeRx1fZQoaAZoCWgPQwgLYTWW8KxxQJSGlFKUaBVLqmgWR0CyE0rjtG/fdX2UKGgGaAloD0MIIeaSqu3PckCUhpRSlGgVS89oFkdAshNNbUwztXV9lChoBmgJaA9DCDPd66R+MHJAlIaUUpRoFUunaBZHQLITXONHYpV1fZQoaAZoCWgPQwiWmGclrRw/QJSGlFKUaBVLX2gWR0CyE6V85S3tdX2UKGgGaAloD0MITTJyFvYecUCUhpRSlGgVS6BoFkdAshOqLNwBHXV9lChoBmgJaA9DCBvXv+vzbXBAlIaUUpRoFUunaBZHQLITrfZ26kJ1fZQoaAZoCWgPQwjjwoGQbBVyQJSGlFKUaBVLtmgWR0CyE6yXhOxjdX2UKGgGaAloD0MIjKIHPobJb0CUhpRSlGgVS8RoFkdAshO7BDXvpnV9lChoBmgJaA9DCE35EFSNMExAlIaUUpRoFUt+aBZHQLIT45vcafl1fZQoaAZoCWgPQwj3ViQm6KZxQJSGlFKUaBVL0mgWR0CyE+7y1/lRdX2UKGgGaAloD0MIsFQX8PKfcUCUhpRSlGgVS7FoFkdAshP5B4Uvf3V9lChoBmgJaA9DCC0I5X0cBHFAlIaUUpRoFUuvaBZHQLIUGMvh60J1fZQoaAZoCWgPQwgapUv/0hBzQJSGlFKUaBVLuWgWR0CyFCCuloDgdX2UKGgGaAloD0MIn8vUJHi1S0CUhpRSlGgVS5FoFkdAshQoHD766HV9lChoBmgJaA9DCM43onuWn3NAlIaUUpRoFUvIaBZHQLIUK3wCr951fZQoaAZoCWgPQwiKARJNYAVzQJSGlFKUaBVL2mgWR0CyFDV/lQuVdX2UKGgGaAloD0MISn7Er5gBckCUhpRSlGgVS7loFkdAshRRWOp84XV9lChoBmgJaA9DCFOzB1oBxXFAlIaUUpRoFUvHaBZHQLIUYhScbzd1fZQoaAZoCWgPQwiemPViqKpxQJSGlFKUaBVLoGgWR0CyFHmH58BudX2UKGgGaAloD0MIDVTGv49VcUCUhpRSlGgVS69oFkdAshSSjYZl4HV9lChoBmgJaA9DCMU7wJPWDnFAlIaUUpRoFUu8aBZHQLIUpqkdmxt1fZQoaAZoCWgPQwjjqUcaXHhyQJSGlFKUaBVLwmgWR0CyFLBCtzS1dWUu"
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
+
"_n_updates": 1230,
|
80 |
"n_steps": 1024,
|
81 |
"gamma": 0.999,
|
82 |
"gae_lambda": 0.98,
|
83 |
"ent_coef": 0.01,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 32,
|
87 |
+
"n_epochs": 10,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
},
|
92 |
"clip_range_vf": null,
|
93 |
"normalize_advantage": true,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87929
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8a0b33b4a479ee2019f4d0306002b3285eb76f5a8582a1beeb7ac088c9299f47
|
3 |
size 87929
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43393
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9f5a7c21ad58db611c231ad8873d17b56725d34a6985397aa7d3490765767b22
|
3 |
size 43393
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 280.10618828115213, "std_reward": 19.642018196743923, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-04T09:44:14.403147"}
|