kostasang commited on
Commit
803c1a1
1 Parent(s): 694159e

Initial commit

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1128.07 +/- 119.51
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34b8ba69dc5f0f597d633c08634d4a88df1f87e9a199561c1c5f1b64b5407e3f
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f22e0719b80>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f22e0719c10>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f22e0719ca0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f22e0719d30>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f22e0719dc0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f22e0719e50>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f22e0719ee0>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f22e0719f70>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f22e071e040>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f22e071e0d0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f22e071e160>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f22e071e1f0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f22e071b150>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1674650704751931394,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADuOvD/jloq/5eOjvUt7nz6tr9A/QuIIwM8Yab2O+8O/yYGkPvY9uz+vowtAsp0mvyMSVb/N0Ww/u5Qev2ipXr/7s4w/DhhbP7ZE074otJNAt5wnvlcVKcBRUO2+YdgBwL78iL/xIOg+Iaf5v0xwsr98rYQ/x3xCPlVFFT8XX36/DheMP1OP/75zB8K/ALUdPnrzmL/40N69X1JaPjSECz+mjKe+N1vTv40uAj/x930/AhIkP/R4DD9CRAvAmktov90rqz5G7NU/BCsgQAT8rb9mNG8/vykNwCGn+b8oozc/AHovP3afkL/Hrg2+Yz8VP7UMQ0B4Vp6/dajYvl0Pgb845Iq++jeHvzfChb/BfozABO27Pzs4SL/IVVE/geC7ug+8nD9RdmQ/uoylvRyz9r9ypbs9eSckv8CG5T8Zx3i+vvyIv/Eg6D4hp/m/KKM3P0EW+D4W6ju/iZOGPjg2az96E08+mR5RwHiPCz44yRC/c6hGv3ZOz76vnBI/NtcNQHOclTzhfSvA86y5vd7yaz7VOyc/CCWcv8ikg7x6Tsq/pzqsPy9zFkB8Owo97atev778iL+/KQ3AF0EDP0xwsr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAGLO22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAlo6ovAAAAAD4feC/AAAAACx5y70AAAAAbmPdPwAAAADT+cW9AAAAAOcf5z8AAAAArzsAPgAAAADWJfS/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArlTUNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPMxBb0AAAAAcggAwAAAAABMkQc+AAAAAAV+/j8AAAAA5ekpPQAAAAByovQ/AAAAAODjdr0AAAAAYmHbvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADxA0rMAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICgHQi+AAAAAPRb378AAAAAoVwMvgAAAABn9vo/AAAAADQDdbwAAAAAjAbtPwAAAABvlxS6AAAAAOlj6b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABKnDY0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACArTvYPQAAAACs6OW/AAAAADjn3z0AAAAA5Zf8PwAAAAA9NXq6AAAAANfS3j8AAAAAmWpqOwAAAACAyfO/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJF/xyp71I2MAWyUTegDjAF0lEdAp8u0UGmk33V9lChoBkdAkApzBInSfGgHTegDaAhHQKfL0MCtA9p1fZQoaAZHQJDSg5wOvuBoB03oA2gIR0Cn06XFcY65dX2UKGgGR0CVplH8jzI4aAdN6ANoCEdAp9PgE2YOUnV9lChoBkdAkUK5bUwztWgHTegDaAhHQKfX2ZNwiq11fZQoaAZHQJUS2P91loVoB03oA2gIR0Cn1/bQ9ic5dX2UKGgGR0CRDJZBLPD6aAdN6ANoCEdAp+AGPo3aSXV9lChoBkdAk8//XkHUt2gHTegDaAhHQKfgQc1fmcR1fZQoaAZHQIRcPYWcjJNoB03oA2gIR0Cn5FLHdXT3dX2UKGgGR0CT09MA3kxRaAdN6ANoCEdAp+RtFYuCgHV9lChoBkdAh5v5dGAkLWgHTegDaAhHQKfsftZV4ot1fZQoaAZHQIZTkG5c1O1oB03oA2gIR0Cn7LnkcS5BdX2UKGgGR0CQdnCkGiYcaAdN6ANoCEdAp/DdRP420nV9lChoBkdAkyfW4d6syWgHTegDaAhHQKfw+YYzi0h1fZQoaAZHQIsP4Ug0TDhoB03oA2gIR0Cn+Q5SNwR5dX2UKGgGR0CG74fYBeXzaAdN6ANoCEdAp/lGkcjqwHV9lChoBkdAjs0osRQJomgHTegDaAhHQKf9U3cYZVJ1fZQoaAZHQJGFYWCVbA1oB03oA2gIR0Cn/XLHuJDWdX2UKGgGR0CIQX16mfoSaAdN6ANoCEdAqAWTkOqeb3V9lChoBkdAjR5bY02tMmgHTegDaAhHQKgF0yrPt2N1fZQoaAZHQIzvO8scyWRoB03oA2gIR0CoCdUUGmk4dX2UKGgGR0CRi8l7+kxiaAdN6ANoCEdAqAn1YMfA9HV9lChoBkdAjoUXztkWh2gHTegDaAhHQKgSA8scyWR1fZQoaAZHQIh8W/nGKhtoB03oA2gIR0CoEkN9YwIudX2UKGgGR0CVspj3VTaTaAdN6ANoCEdAqBZFlkH2RXV9lChoBkdAlm+d07r9l2gHTegDaAhHQKgWYNcW0qp1fZQoaAZHQJcL+xB3RohoB03oA2gIR0CoHjXlr/KhdX2UKGgGR0CVy0Yk3S8baAdN6ANoCEdAqB50JY1YQ3V9lChoBkdAk4ngSnLq2WgHTegDaAhHQKgiccDKYAt1fZQoaAZHQJfirSiM5wRoB03oA2gIR0CoIo5WJaaDdX2UKGgGR0CTgQisGPgfaAdN6ANoCEdAqCpv73wkPnV9lChoBkdAmY35vxYq5WgHTegDaAhHQKgqq5Etuk11fZQoaAZHQJav4mnfl6toB03oA2gIR0CoLrOiFj/ddX2UKGgGR0CXEKOiWVu8aAdN6ANoCEdAqC7Q42jwhHV9lChoBkdAk+2ZSJj2BmgHTegDaAhHQKg45hDw6Qx1fZQoaAZHQJa9qrKeTV5oB03oA2gIR0CoOV3MINVjdX2UKGgGR0CRxUES/TLGaAdN6ANoCEdAqEC8ABDG+HV9lChoBkdAkgtbCiyprGgHTegDaAhHQKhA7OKO1fF1fZQoaAZHQJQwQ/dIoVpoB03oA2gIR0CoS+qT8pCsdX2UKGgGR0CU45H2h7E6aAdN6ANoCEdAqEwrijtXxXV9lChoBkdAj7Xc8La24WgHTegDaAhHQKhQO43FUAF1fZQoaAZHQJcvYqZtvXNoB03oA2gIR0CoUFYgA6uGdX2UKGgGR0CIu9aHsTnJaAdN6ANoCEdAqFhSiblRxnV9lChoBkdAjOwyWRigCmgHTegDaAhHQKhYjEHdGiJ1fZQoaAZHQJMcTE1l5GBoB03oA2gIR0CoXIKk/KQrdX2UKGgGR0CR8QlQMx46aAdN6ANoCEdAqFyeNcW0q3V9lChoBkdAk+5ySV4X42gHTegDaAhHQKhkfQk5ZKZ1fZQoaAZHQJSf0a4tpVVoB03oA2gIR0CoZLS/j81odX2UKGgGR0CYJWa2nbZfaAdN6ANoCEdAqGivUnXumnV9lChoBkdAiYGR5kbxVmgHTegDaAhHQKhozFkQPI51fZQoaAZHQJb6RmVZ9uxoB03oA2gIR0CocLlUZNwjdX2UKGgGR0CTKi+c6NlzaAdN6ANoCEdAqHDyYG+sYHV9lChoBkdAmF8+vyLAHmgHTegDaAhHQKh1Ay9EkSp1fZQoaAZHQJiLkQ7LdN5oB03oA2gIR0CodR8MmWt2dX2UKGgGR0CWDXjjaPCEaAdN6ANoCEdAqH0mr2g3+HV9lChoBkdAldVcJQcghmgHTegDaAhHQKh9YP3i7051fZQoaAZHQJe6NvrGBFxoB03oA2gIR0CogVNhd+ocdX2UKGgGR0CVyz6oVEeAaAdN6ANoCEdAqIFuf9P1tnV9lChoBkdAkYo6fvnbI2gHTegDaAhHQKiJVL2YfGN1fZQoaAZHQJX03cXWOIZoB03oA2gIR0CoiYzNdJJ5dX2UKGgGR0CUVr3cHnloaAdN6ANoCEdAqI2M495hSnV9lChoBkdAmCQ4NmUW22gHTegDaAhHQKiNpsVtXPt1fZQoaAZHQJXQL2AXl8xoB03oA2gIR0ColYpR4yGjdX2UKGgGR0CWDESgoPTYaAdN6ANoCEdAqJXFoL5RCXV9lChoBkdAlFx3xz7uUmgHTegDaAhHQKiZtGus90R1fZQoaAZHQJZE5lBhQWNoB03oA2gIR0Comc/m9xp+dX2UKGgGR0CWloxptaZAaAdN6ANoCEdAqKHFkauOj3V9lChoBkdAlxtWXokiU2gHTegDaAhHQKiiA1/DtPZ1fZQoaAZHQJVxz0se4kNoB03oA2gIR0CopiK0MPSVdX2UKGgGR0CR121QIldDaAdN6ANoCEdAqKY/4/NZ/3V9lChoBkdAk2iFnVXmvGgHTegDaAhHQKiuMlNUOut1fZQoaAZHQI1wDqv/zatoB03oA2gIR0CormzY/Vy4dX2UKGgGR0CW96XlbNbDaAdN6ANoCEdAqLJkM/hVEXV9lChoBkdAhGg6ij+Jg2gHTegDaAhHQKiyf0IToMd1fZQoaAZHQJZJ0Ja7mMhoB03oA2gIR0Coumo99tuUdX2UKGgGR0CW0xDtPYWdaAdN6ANoCEdAqLqioybhFXV9lChoBkdAlmU0r9VFQWgHTegDaAhHQKi+mCGN70F1fZQoaAZHQJdEcB5ooNNoB03oA2gIR0CovrPfTCtSdX2UKGgGR0CUS+c580DVaAdN6ANoCEdAqMaIkC3gDXV9lChoBkdAl3cxpcophGgHTegDaAhHQKjGxx7RfF91fZQoaAZHQJhY0YxcmjVoB03oA2gIR0CoysG2LHdXdX2UKGgGR0CXfOLB9Cu2aAdN6ANoCEdAqMrd0o0ALnV9lChoBkdAmF6wk5ZKWmgHTegDaAhHQKjSvZIQOFx1fZQoaAZHQJc1B6D5CWxoB03oA2gIR0Co0vbFKkEcdX2UKGgGR0CPdQFxGUfQaAdN6ANoCEdAqNcX1jAi3XV9lChoBkdAk2nOB6KLsWgHTegDaAhHQKjXMv+wTuh1fZQoaAZHQJYJSKQ7tAtoB03oA2gIR0Co3y+evpyIdX2UKGgGR0CUqG3AEdNnaAdN6ANoCEdAqN9o60Y0mHV9lChoBkdAlMUwRkEs8WgHTegDaAhHQKjjbqJuVHF1fZQoaAZHQJPKwB6rvLJoB03oA2gIR0Co44nSWqtHdX2UKGgGR0CW9X5+H8CQaAdN6ANoCEdAqOuZcTrVv3V9lChoBkdAlWqStihFmWgHTegDaAhHQKjr0pvxYq51fZQoaAZHQJPWbMHKOktoB03oA2gIR0Co7/X6InBtdX2UKGgGR0CMy45ggHNYaAdN6ANoCEdAqPAYAKfFrHV9lChoBkdAk2iXIyTINmgHTegDaAhHQKj4O7EHdGl1fZQoaAZHQI3Dkpy6tkpoB03oA2gIR0Co+HPnKW9ldX2UKGgGR0CQ1ICT2WY4aAdN6ANoCEdAqPx0ZeiSJXV9lChoBkdAkyNsju8brGgHTegDaAhHQKj8j3hXKbN1fZQoaAZHQJG86eqaPS5oB03oA2gIR0CpBHeRYA80dX2UKGgGR0CHSeIgNgBtaAdN6ANoCEdAqQSyOq//N3VlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d4c4b93184d3399f8d4e68a89995277b084d15ced2728d4d417210a5f75c0bd
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18b31102a54d765fbbbd65d8c10e280cec1250a6e672219c2c75ae5c9f5df228
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f22e0719b80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f22e0719c10>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f22e0719ca0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f22e0719d30>", "_build": "<function ActorCriticPolicy._build at 0x7f22e0719dc0>", "forward": "<function ActorCriticPolicy.forward at 0x7f22e0719e50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f22e0719ee0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f22e0719f70>", "_predict": "<function ActorCriticPolicy._predict at 0x7f22e071e040>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f22e071e0d0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f22e071e160>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f22e071e1f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f22e071b150>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674650704751931394, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADuOvD/jloq/5eOjvUt7nz6tr9A/QuIIwM8Yab2O+8O/yYGkPvY9uz+vowtAsp0mvyMSVb/N0Ww/u5Qev2ipXr/7s4w/DhhbP7ZE074otJNAt5wnvlcVKcBRUO2+YdgBwL78iL/xIOg+Iaf5v0xwsr98rYQ/x3xCPlVFFT8XX36/DheMP1OP/75zB8K/ALUdPnrzmL/40N69X1JaPjSECz+mjKe+N1vTv40uAj/x930/AhIkP/R4DD9CRAvAmktov90rqz5G7NU/BCsgQAT8rb9mNG8/vykNwCGn+b8oozc/AHovP3afkL/Hrg2+Yz8VP7UMQ0B4Vp6/dajYvl0Pgb845Iq++jeHvzfChb/BfozABO27Pzs4SL/IVVE/geC7ug+8nD9RdmQ/uoylvRyz9r9ypbs9eSckv8CG5T8Zx3i+vvyIv/Eg6D4hp/m/KKM3P0EW+D4W6ju/iZOGPjg2az96E08+mR5RwHiPCz44yRC/c6hGv3ZOz76vnBI/NtcNQHOclTzhfSvA86y5vd7yaz7VOyc/CCWcv8ikg7x6Tsq/pzqsPy9zFkB8Owo97atev778iL+/KQ3AF0EDP0xwsr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAGLO22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAlo6ovAAAAAD4feC/AAAAACx5y70AAAAAbmPdPwAAAADT+cW9AAAAAOcf5z8AAAAArzsAPgAAAADWJfS/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArlTUNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPMxBb0AAAAAcggAwAAAAABMkQc+AAAAAAV+/j8AAAAA5ekpPQAAAAByovQ/AAAAAODjdr0AAAAAYmHbvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADxA0rMAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICgHQi+AAAAAPRb378AAAAAoVwMvgAAAABn9vo/AAAAADQDdbwAAAAAjAbtPwAAAABvlxS6AAAAAOlj6b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABKnDY0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACArTvYPQAAAACs6OW/AAAAADjn3z0AAAAA5Zf8PwAAAAA9NXq6AAAAANfS3j8AAAAAmWpqOwAAAACAyfO/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJF/xyp71I2MAWyUTegDjAF0lEdAp8u0UGmk33V9lChoBkdAkApzBInSfGgHTegDaAhHQKfL0MCtA9p1fZQoaAZHQJDSg5wOvuBoB03oA2gIR0Cn06XFcY65dX2UKGgGR0CVplH8jzI4aAdN6ANoCEdAp9PgE2YOUnV9lChoBkdAkUK5bUwztWgHTegDaAhHQKfX2ZNwiq11fZQoaAZHQJUS2P91loVoB03oA2gIR0Cn1/bQ9ic5dX2UKGgGR0CRDJZBLPD6aAdN6ANoCEdAp+AGPo3aSXV9lChoBkdAk8//XkHUt2gHTegDaAhHQKfgQc1fmcR1fZQoaAZHQIRcPYWcjJNoB03oA2gIR0Cn5FLHdXT3dX2UKGgGR0CT09MA3kxRaAdN6ANoCEdAp+RtFYuCgHV9lChoBkdAh5v5dGAkLWgHTegDaAhHQKfsftZV4ot1fZQoaAZHQIZTkG5c1O1oB03oA2gIR0Cn7LnkcS5BdX2UKGgGR0CQdnCkGiYcaAdN6ANoCEdAp/DdRP420nV9lChoBkdAkyfW4d6syWgHTegDaAhHQKfw+YYzi0h1fZQoaAZHQIsP4Ug0TDhoB03oA2gIR0Cn+Q5SNwR5dX2UKGgGR0CG74fYBeXzaAdN6ANoCEdAp/lGkcjqwHV9lChoBkdAjs0osRQJomgHTegDaAhHQKf9U3cYZVJ1fZQoaAZHQJGFYWCVbA1oB03oA2gIR0Cn/XLHuJDWdX2UKGgGR0CIQX16mfoSaAdN6ANoCEdAqAWTkOqeb3V9lChoBkdAjR5bY02tMmgHTegDaAhHQKgF0yrPt2N1fZQoaAZHQIzvO8scyWRoB03oA2gIR0CoCdUUGmk4dX2UKGgGR0CRi8l7+kxiaAdN6ANoCEdAqAn1YMfA9HV9lChoBkdAjoUXztkWh2gHTegDaAhHQKgSA8scyWR1fZQoaAZHQIh8W/nGKhtoB03oA2gIR0CoEkN9YwIudX2UKGgGR0CVspj3VTaTaAdN6ANoCEdAqBZFlkH2RXV9lChoBkdAlm+d07r9l2gHTegDaAhHQKgWYNcW0qp1fZQoaAZHQJcL+xB3RohoB03oA2gIR0CoHjXlr/KhdX2UKGgGR0CVy0Yk3S8baAdN6ANoCEdAqB50JY1YQ3V9lChoBkdAk4ngSnLq2WgHTegDaAhHQKgiccDKYAt1fZQoaAZHQJfirSiM5wRoB03oA2gIR0CoIo5WJaaDdX2UKGgGR0CTgQisGPgfaAdN6ANoCEdAqCpv73wkPnV9lChoBkdAmY35vxYq5WgHTegDaAhHQKgqq5Etuk11fZQoaAZHQJav4mnfl6toB03oA2gIR0CoLrOiFj/ddX2UKGgGR0CXEKOiWVu8aAdN6ANoCEdAqC7Q42jwhHV9lChoBkdAk+2ZSJj2BmgHTegDaAhHQKg45hDw6Qx1fZQoaAZHQJa9qrKeTV5oB03oA2gIR0CoOV3MINVjdX2UKGgGR0CRxUES/TLGaAdN6ANoCEdAqEC8ABDG+HV9lChoBkdAkgtbCiyprGgHTegDaAhHQKhA7OKO1fF1fZQoaAZHQJQwQ/dIoVpoB03oA2gIR0CoS+qT8pCsdX2UKGgGR0CU45H2h7E6aAdN6ANoCEdAqEwrijtXxXV9lChoBkdAj7Xc8La24WgHTegDaAhHQKhQO43FUAF1fZQoaAZHQJcvYqZtvXNoB03oA2gIR0CoUFYgA6uGdX2UKGgGR0CIu9aHsTnJaAdN6ANoCEdAqFhSiblRxnV9lChoBkdAjOwyWRigCmgHTegDaAhHQKhYjEHdGiJ1fZQoaAZHQJMcTE1l5GBoB03oA2gIR0CoXIKk/KQrdX2UKGgGR0CR8QlQMx46aAdN6ANoCEdAqFyeNcW0q3V9lChoBkdAk+5ySV4X42gHTegDaAhHQKhkfQk5ZKZ1fZQoaAZHQJSf0a4tpVVoB03oA2gIR0CoZLS/j81odX2UKGgGR0CYJWa2nbZfaAdN6ANoCEdAqGivUnXumnV9lChoBkdAiYGR5kbxVmgHTegDaAhHQKhozFkQPI51fZQoaAZHQJb6RmVZ9uxoB03oA2gIR0CocLlUZNwjdX2UKGgGR0CTKi+c6NlzaAdN6ANoCEdAqHDyYG+sYHV9lChoBkdAmF8+vyLAHmgHTegDaAhHQKh1Ay9EkSp1fZQoaAZHQJiLkQ7LdN5oB03oA2gIR0CodR8MmWt2dX2UKGgGR0CWDXjjaPCEaAdN6ANoCEdAqH0mr2g3+HV9lChoBkdAldVcJQcghmgHTegDaAhHQKh9YP3i7051fZQoaAZHQJe6NvrGBFxoB03oA2gIR0CogVNhd+ocdX2UKGgGR0CVyz6oVEeAaAdN6ANoCEdAqIFuf9P1tnV9lChoBkdAkYo6fvnbI2gHTegDaAhHQKiJVL2YfGN1fZQoaAZHQJX03cXWOIZoB03oA2gIR0CoiYzNdJJ5dX2UKGgGR0CUVr3cHnloaAdN6ANoCEdAqI2M495hSnV9lChoBkdAmCQ4NmUW22gHTegDaAhHQKiNpsVtXPt1fZQoaAZHQJXQL2AXl8xoB03oA2gIR0ColYpR4yGjdX2UKGgGR0CWDESgoPTYaAdN6ANoCEdAqJXFoL5RCXV9lChoBkdAlFx3xz7uUmgHTegDaAhHQKiZtGus90R1fZQoaAZHQJZE5lBhQWNoB03oA2gIR0Comc/m9xp+dX2UKGgGR0CWloxptaZAaAdN6ANoCEdAqKHFkauOj3V9lChoBkdAlxtWXokiU2gHTegDaAhHQKiiA1/DtPZ1fZQoaAZHQJVxz0se4kNoB03oA2gIR0CopiK0MPSVdX2UKGgGR0CR121QIldDaAdN6ANoCEdAqKY/4/NZ/3V9lChoBkdAk2iFnVXmvGgHTegDaAhHQKiuMlNUOut1fZQoaAZHQI1wDqv/zatoB03oA2gIR0CormzY/Vy4dX2UKGgGR0CW96XlbNbDaAdN6ANoCEdAqLJkM/hVEXV9lChoBkdAhGg6ij+Jg2gHTegDaAhHQKiyf0IToMd1fZQoaAZHQJZJ0Ja7mMhoB03oA2gIR0Coumo99tuUdX2UKGgGR0CW0xDtPYWdaAdN6ANoCEdAqLqioybhFXV9lChoBkdAlmU0r9VFQWgHTegDaAhHQKi+mCGN70F1fZQoaAZHQJdEcB5ooNNoB03oA2gIR0CovrPfTCtSdX2UKGgGR0CUS+c580DVaAdN6ANoCEdAqMaIkC3gDXV9lChoBkdAl3cxpcophGgHTegDaAhHQKjGxx7RfF91fZQoaAZHQJhY0YxcmjVoB03oA2gIR0CoysG2LHdXdX2UKGgGR0CXfOLB9Cu2aAdN6ANoCEdAqMrd0o0ALnV9lChoBkdAmF6wk5ZKWmgHTegDaAhHQKjSvZIQOFx1fZQoaAZHQJc1B6D5CWxoB03oA2gIR0Co0vbFKkEcdX2UKGgGR0CPdQFxGUfQaAdN6ANoCEdAqNcX1jAi3XV9lChoBkdAk2nOB6KLsWgHTegDaAhHQKjXMv+wTuh1fZQoaAZHQJYJSKQ7tAtoB03oA2gIR0Co3y+evpyIdX2UKGgGR0CUqG3AEdNnaAdN6ANoCEdAqN9o60Y0mHV9lChoBkdAlMUwRkEs8WgHTegDaAhHQKjjbqJuVHF1fZQoaAZHQJPKwB6rvLJoB03oA2gIR0Co44nSWqtHdX2UKGgGR0CW9X5+H8CQaAdN6ANoCEdAqOuZcTrVv3V9lChoBkdAlWqStihFmWgHTegDaAhHQKjr0pvxYq51fZQoaAZHQJPWbMHKOktoB03oA2gIR0Co7/X6InBtdX2UKGgGR0CMy45ggHNYaAdN6ANoCEdAqPAYAKfFrHV9lChoBkdAk2iXIyTINmgHTegDaAhHQKj4O7EHdGl1fZQoaAZHQI3Dkpy6tkpoB03oA2gIR0Co+HPnKW9ldX2UKGgGR0CQ1ICT2WY4aAdN6ANoCEdAqPx0ZeiSJXV9lChoBkdAkyNsju8brGgHTegDaAhHQKj8j3hXKbN1fZQoaAZHQJG86eqaPS5oB03oA2gIR0CpBHeRYA80dX2UKGgGR0CHSeIgNgBtaAdN6ANoCEdAqQSyOq//N3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
replay.mp4 ADDED
Binary file (992 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1128.0730985252653, "std_reward": 119.5149616484548, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-25T13:41:29.757058"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33ee098f0ff086eea5c206e453f67579f104c604adbb69eb0404c6a6a189cc6f
3
+ size 2136