{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f22e071b150>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674650704751931394, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADuOvD/jloq/5eOjvUt7nz6tr9A/QuIIwM8Yab2O+8O/yYGkPvY9uz+vowtAsp0mvyMSVb/N0Ww/u5Qev2ipXr/7s4w/DhhbP7ZE074otJNAt5wnvlcVKcBRUO2+YdgBwL78iL/xIOg+Iaf5v0xwsr98rYQ/x3xCPlVFFT8XX36/DheMP1OP/75zB8K/ALUdPnrzmL/40N69X1JaPjSECz+mjKe+N1vTv40uAj/x930/AhIkP/R4DD9CRAvAmktov90rqz5G7NU/BCsgQAT8rb9mNG8/vykNwCGn+b8oozc/AHovP3afkL/Hrg2+Yz8VP7UMQ0B4Vp6/dajYvl0Pgb845Iq++jeHvzfChb/BfozABO27Pzs4SL/IVVE/geC7ug+8nD9RdmQ/uoylvRyz9r9ypbs9eSckv8CG5T8Zx3i+vvyIv/Eg6D4hp/m/KKM3P0EW+D4W6ju/iZOGPjg2az96E08+mR5RwHiPCz44yRC/c6hGv3ZOz76vnBI/NtcNQHOclTzhfSvA86y5vd7yaz7VOyc/CCWcv8ikg7x6Tsq/pzqsPy9zFkB8Owo97atev778iL+/KQ3AF0EDP0xwsr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAGLO22AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAlo6ovAAAAAD4feC/AAAAACx5y70AAAAAbmPdPwAAAADT+cW9AAAAAOcf5z8AAAAArzsAPgAAAADWJfS/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAArlTUNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgPMxBb0AAAAAcggAwAAAAABMkQc+AAAAAAV+/j8AAAAA5ekpPQAAAAByovQ/AAAAAODjdr0AAAAAYmHbvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAADxA0rMAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICgHQi+AAAAAPRb378AAAAAoVwMvgAAAABn9vo/AAAAADQDdbwAAAAAjAbtPwAAAABvlxS6AAAAAOlj6b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABKnDY0AACAPwAAAAAAAAAAAAAAAAAAAAAAAACArTvYPQAAAACs6OW/AAAAADjn3z0AAAAA5Zf8PwAAAAA9NXq6AAAAANfS3j8AAAAAmWpqOwAAAACAyfO/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJF/xyp71I2MAWyUTegDjAF0lEdAp8u0UGmk33V9lChoBkdAkApzBInSfGgHTegDaAhHQKfL0MCtA9p1fZQoaAZHQJDSg5wOvuBoB03oA2gIR0Cn06XFcY65dX2UKGgGR0CVplH8jzI4aAdN6ANoCEdAp9PgE2YOUnV9lChoBkdAkUK5bUwztWgHTegDaAhHQKfX2ZNwiq11fZQoaAZHQJUS2P91loVoB03oA2gIR0Cn1/bQ9ic5dX2UKGgGR0CRDJZBLPD6aAdN6ANoCEdAp+AGPo3aSXV9lChoBkdAk8//XkHUt2gHTegDaAhHQKfgQc1fmcR1fZQoaAZHQIRcPYWcjJNoB03oA2gIR0Cn5FLHdXT3dX2UKGgGR0CT09MA3kxRaAdN6ANoCEdAp+RtFYuCgHV9lChoBkdAh5v5dGAkLWgHTegDaAhHQKfsftZV4ot1fZQoaAZHQIZTkG5c1O1oB03oA2gIR0Cn7LnkcS5BdX2UKGgGR0CQdnCkGiYcaAdN6ANoCEdAp/DdRP420nV9lChoBkdAkyfW4d6syWgHTegDaAhHQKfw+YYzi0h1fZQoaAZHQIsP4Ug0TDhoB03oA2gIR0Cn+Q5SNwR5dX2UKGgGR0CG74fYBeXzaAdN6ANoCEdAp/lGkcjqwHV9lChoBkdAjs0osRQJomgHTegDaAhHQKf9U3cYZVJ1fZQoaAZHQJGFYWCVbA1oB03oA2gIR0Cn/XLHuJDWdX2UKGgGR0CIQX16mfoSaAdN6ANoCEdAqAWTkOqeb3V9lChoBkdAjR5bY02tMmgHTegDaAhHQKgF0yrPt2N1fZQoaAZHQIzvO8scyWRoB03oA2gIR0CoCdUUGmk4dX2UKGgGR0CRi8l7+kxiaAdN6ANoCEdAqAn1YMfA9HV9lChoBkdAjoUXztkWh2gHTegDaAhHQKgSA8scyWR1fZQoaAZHQIh8W/nGKhtoB03oA2gIR0CoEkN9YwIudX2UKGgGR0CVspj3VTaTaAdN6ANoCEdAqBZFlkH2RXV9lChoBkdAlm+d07r9l2gHTegDaAhHQKgWYNcW0qp1fZQoaAZHQJcL+xB3RohoB03oA2gIR0CoHjXlr/KhdX2UKGgGR0CVy0Yk3S8baAdN6ANoCEdAqB50JY1YQ3V9lChoBkdAk4ngSnLq2WgHTegDaAhHQKgiccDKYAt1fZQoaAZHQJfirSiM5wRoB03oA2gIR0CoIo5WJaaDdX2UKGgGR0CTgQisGPgfaAdN6ANoCEdAqCpv73wkPnV9lChoBkdAmY35vxYq5WgHTegDaAhHQKgqq5Etuk11fZQoaAZHQJav4mnfl6toB03oA2gIR0CoLrOiFj/ddX2UKGgGR0CXEKOiWVu8aAdN6ANoCEdAqC7Q42jwhHV9lChoBkdAk+2ZSJj2BmgHTegDaAhHQKg45hDw6Qx1fZQoaAZHQJa9qrKeTV5oB03oA2gIR0CoOV3MINVjdX2UKGgGR0CRxUES/TLGaAdN6ANoCEdAqEC8ABDG+HV9lChoBkdAkgtbCiyprGgHTegDaAhHQKhA7OKO1fF1fZQoaAZHQJQwQ/dIoVpoB03oA2gIR0CoS+qT8pCsdX2UKGgGR0CU45H2h7E6aAdN6ANoCEdAqEwrijtXxXV9lChoBkdAj7Xc8La24WgHTegDaAhHQKhQO43FUAF1fZQoaAZHQJcvYqZtvXNoB03oA2gIR0CoUFYgA6uGdX2UKGgGR0CIu9aHsTnJaAdN6ANoCEdAqFhSiblRxnV9lChoBkdAjOwyWRigCmgHTegDaAhHQKhYjEHdGiJ1fZQoaAZHQJMcTE1l5GBoB03oA2gIR0CoXIKk/KQrdX2UKGgGR0CR8QlQMx46aAdN6ANoCEdAqFyeNcW0q3V9lChoBkdAk+5ySV4X42gHTegDaAhHQKhkfQk5ZKZ1fZQoaAZHQJSf0a4tpVVoB03oA2gIR0CoZLS/j81odX2UKGgGR0CYJWa2nbZfaAdN6ANoCEdAqGivUnXumnV9lChoBkdAiYGR5kbxVmgHTegDaAhHQKhozFkQPI51fZQoaAZHQJb6RmVZ9uxoB03oA2gIR0CocLlUZNwjdX2UKGgGR0CTKi+c6NlzaAdN6ANoCEdAqHDyYG+sYHV9lChoBkdAmF8+vyLAHmgHTegDaAhHQKh1Ay9EkSp1fZQoaAZHQJiLkQ7LdN5oB03oA2gIR0CodR8MmWt2dX2UKGgGR0CWDXjjaPCEaAdN6ANoCEdAqH0mr2g3+HV9lChoBkdAldVcJQcghmgHTegDaAhHQKh9YP3i7051fZQoaAZHQJe6NvrGBFxoB03oA2gIR0CogVNhd+ocdX2UKGgGR0CVyz6oVEeAaAdN6ANoCEdAqIFuf9P1tnV9lChoBkdAkYo6fvnbI2gHTegDaAhHQKiJVL2YfGN1fZQoaAZHQJX03cXWOIZoB03oA2gIR0CoiYzNdJJ5dX2UKGgGR0CUVr3cHnloaAdN6ANoCEdAqI2M495hSnV9lChoBkdAmCQ4NmUW22gHTegDaAhHQKiNpsVtXPt1fZQoaAZHQJXQL2AXl8xoB03oA2gIR0ColYpR4yGjdX2UKGgGR0CWDESgoPTYaAdN6ANoCEdAqJXFoL5RCXV9lChoBkdAlFx3xz7uUmgHTegDaAhHQKiZtGus90R1fZQoaAZHQJZE5lBhQWNoB03oA2gIR0Comc/m9xp+dX2UKGgGR0CWloxptaZAaAdN6ANoCEdAqKHFkauOj3V9lChoBkdAlxtWXokiU2gHTegDaAhHQKiiA1/DtPZ1fZQoaAZHQJVxz0se4kNoB03oA2gIR0CopiK0MPSVdX2UKGgGR0CR121QIldDaAdN6ANoCEdAqKY/4/NZ/3V9lChoBkdAk2iFnVXmvGgHTegDaAhHQKiuMlNUOut1fZQoaAZHQI1wDqv/zatoB03oA2gIR0CormzY/Vy4dX2UKGgGR0CW96XlbNbDaAdN6ANoCEdAqLJkM/hVEXV9lChoBkdAhGg6ij+Jg2gHTegDaAhHQKiyf0IToMd1fZQoaAZHQJZJ0Ja7mMhoB03oA2gIR0Coumo99tuUdX2UKGgGR0CW0xDtPYWdaAdN6ANoCEdAqLqioybhFXV9lChoBkdAlmU0r9VFQWgHTegDaAhHQKi+mCGN70F1fZQoaAZHQJdEcB5ooNNoB03oA2gIR0CovrPfTCtSdX2UKGgGR0CUS+c580DVaAdN6ANoCEdAqMaIkC3gDXV9lChoBkdAl3cxpcophGgHTegDaAhHQKjGxx7RfF91fZQoaAZHQJhY0YxcmjVoB03oA2gIR0CoysG2LHdXdX2UKGgGR0CXfOLB9Cu2aAdN6ANoCEdAqMrd0o0ALnV9lChoBkdAmF6wk5ZKWmgHTegDaAhHQKjSvZIQOFx1fZQoaAZHQJc1B6D5CWxoB03oA2gIR0Co0vbFKkEcdX2UKGgGR0CPdQFxGUfQaAdN6ANoCEdAqNcX1jAi3XV9lChoBkdAk2nOB6KLsWgHTegDaAhHQKjXMv+wTuh1fZQoaAZHQJYJSKQ7tAtoB03oA2gIR0Co3y+evpyIdX2UKGgGR0CUqG3AEdNnaAdN6ANoCEdAqN9o60Y0mHV9lChoBkdAlMUwRkEs8WgHTegDaAhHQKjjbqJuVHF1fZQoaAZHQJPKwB6rvLJoB03oA2gIR0Co44nSWqtHdX2UKGgGR0CW9X5+H8CQaAdN6ANoCEdAqOuZcTrVv3V9lChoBkdAlWqStihFmWgHTegDaAhHQKjr0pvxYq51fZQoaAZHQJPWbMHKOktoB03oA2gIR0Co7/X6InBtdX2UKGgGR0CMy45ggHNYaAdN6ANoCEdAqPAYAKfFrHV9lChoBkdAk2iXIyTINmgHTegDaAhHQKj4O7EHdGl1fZQoaAZHQI3Dkpy6tkpoB03oA2gIR0Co+HPnKW9ldX2UKGgGR0CQ1ICT2WY4aAdN6ANoCEdAqPx0ZeiSJXV9lChoBkdAkyNsju8brGgHTegDaAhHQKj8j3hXKbN1fZQoaAZHQJG86eqaPS5oB03oA2gIR0CpBHeRYA80dX2UKGgGR0CHSeIgNgBtaAdN6ANoCEdAqQSyOq//N3VlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}