File size: 2,804 Bytes
bb35569
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55ebf3b
 
bb35569
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55ebf3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb35569
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
license: mit
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
base_model: microsoft/Phi-3-medium-128k-instruct
model-index:
- name: results
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# results

This model is a fine-tuned version of [microsoft/Phi-3-medium-128k-instruct](https://huggingface.co/microsoft/Phi-3-medium-128k-instruct) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3259

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 2.102         | 0.1065 | 100  | 2.1266          |
| 2.0156        | 0.2130 | 200  | 1.9941          |
| 1.8151        | 0.3195 | 300  | 1.8149          |
| 1.6951        | 0.4260 | 400  | 1.5771          |
| 1.2789        | 0.5325 | 500  | 1.3936          |
| 1.0007        | 0.6390 | 600  | 1.1524          |
| 0.7882        | 0.7455 | 700  | 0.9936          |
| 0.9486        | 0.8520 | 800  | 0.8539          |
| 0.7381        | 0.9585 | 900  | 0.7410          |
| 0.6254        | 1.0650 | 1000 | 0.6283          |
| 0.4915        | 1.1715 | 1100 | 0.5834          |
| 0.3432        | 1.2780 | 1200 | 0.5034          |
| 0.349         | 1.3845 | 1300 | 0.4476          |
| 0.4378        | 1.4909 | 1400 | 0.4160          |
| 0.4522        | 1.5974 | 1500 | 0.4061          |
| 0.3183        | 1.7039 | 1600 | 0.3795          |
| 0.3184        | 1.8104 | 1700 | 0.3707          |
| 0.267         | 1.9169 | 1800 | 0.3601          |
| 0.2966        | 2.0234 | 1900 | 0.3538          |
| 0.2697        | 2.1299 | 2000 | 0.3492          |
| 0.3662        | 2.2364 | 2100 | 0.3424          |
| 0.3135        | 2.3429 | 2200 | 0.3407          |
| 0.3339        | 2.4494 | 2300 | 0.3366          |
| 0.1828        | 2.5559 | 2400 | 0.3340          |
| 0.2824        | 2.6624 | 2500 | 0.3306          |
| 0.3204        | 2.7689 | 2600 | 0.3289          |
| 0.3062        | 2.8754 | 2700 | 0.3263          |
| 0.313         | 2.9819 | 2800 | 0.3259          |


### Framework versions

- PEFT 0.11.1
- Transformers 4.41.2
- Pytorch 2.1.2+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1