File size: 4,998 Bytes
fb72b03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
from pprint import pprint
from datasets import load_dataset
from transformers.pipelines import pipeline
model_alias = "kotoba-tech/kotoba-whisper-v1.1"
print("""### P + S ###""")
pipe = pipeline(model=model_alias,
punctuator=True,
stable_ts=True,
chunk_length_s=15,
batch_size=16,
trust_remote_code=True)
dataset = load_dataset("kotoba-tech/kotoba-whisper-eval", split="train")
for i in dataset:
if i["audio"]["path"] == "long_interview_1.mp3":
i["audio"]["array"] = i["audio"]["array"][:7938000]
prediction = pipe(
i["audio"],
return_timestamps=True,
generate_kwargs={"language": "japanese", "task": "transcribe"}
)
pprint(prediction)
break
print("""### P ###""")
pipe = pipeline(model=model_alias,
punctuator=True,
stable_ts=False,
chunk_length_s=15,
batch_size=16,
trust_remote_code=True)
dataset = load_dataset("kotoba-tech/kotoba-whisper-eval", split="train")
for i in dataset:
if i["audio"]["path"] == "long_interview_1.mp3":
i["audio"]["array"] = i["audio"]["array"][:7938000]
prediction = pipe(
i["audio"],
return_timestamps=True,
generate_kwargs={"language": "japanese", "task": "transcribe"}
)
pprint(prediction)
break
print("""### S ###""")
pipe = pipeline(model=model_alias,
punctuator=False,
stable_ts=True,
chunk_length_s=15,
batch_size=16,
trust_remote_code=True)
dataset = load_dataset("kotoba-tech/kotoba-whisper-eval", split="train")
for i in dataset:
if i["audio"]["path"] == "long_interview_1.mp3":
i["audio"]["array"] = i["audio"]["array"][:7938000]
prediction = pipe(
i["audio"],
return_timestamps=True,
generate_kwargs={"language": "japanese", "task": "transcribe"}
)
pprint(prediction)
break
print("""### RAW ###""")
pipe = pipeline(model=model_alias,
punctuator=False,
stable_ts=False,
chunk_length_s=15,
batch_size=16,
trust_remote_code=True)
dataset = load_dataset("kotoba-tech/kotoba-whisper-eval", split="train")
for i in dataset:
if i["audio"]["path"] == "long_interview_1.mp3":
i["audio"]["array"] = i["audio"]["array"][:7938000]
prediction = pipe(
i["audio"],
return_timestamps=True,
generate_kwargs={"language": "japanese", "task": "transcribe"}
)
pprint(prediction)
break
print("""### P + S ###""")
pipe = pipeline(model=model_alias,
punctuator=True,
stable_ts=True,
chunk_length_s=15,
batch_size=16,
trust_remote_code=True)
dataset = load_dataset("kotoba-tech/kotoba-whisper-eval", split="train")
for i in dataset:
if i["audio"]["path"] == "long_interview_1.mp3":
i["audio"]["array"] = i["audio"]["array"][:7938000]
prediction = pipe(
i["audio"],
generate_kwargs={"language": "japanese", "task": "transcribe"}
)
pprint(prediction)
break
print("""### P ###""")
pipe = pipeline(model=model_alias,
punctuator=True,
stable_ts=False,
chunk_length_s=15,
batch_size=16,
trust_remote_code=True)
dataset = load_dataset("kotoba-tech/kotoba-whisper-eval", split="train")
for i in dataset:
if i["audio"]["path"] == "long_interview_1.mp3":
i["audio"]["array"] = i["audio"]["array"][:7938000]
prediction = pipe(
i["audio"],
generate_kwargs={"language": "japanese", "task": "transcribe"}
)
pprint(prediction)
break
print("""### S ###""")
pipe = pipeline(model=model_alias,
punctuator=False,
stable_ts=True,
chunk_length_s=15,
batch_size=16,
trust_remote_code=True)
dataset = load_dataset("kotoba-tech/kotoba-whisper-eval", split="train")
for i in dataset:
if i["audio"]["path"] == "long_interview_1.mp3":
i["audio"]["array"] = i["audio"]["array"][:7938000]
prediction = pipe(
i["audio"],
generate_kwargs={"language": "japanese", "task": "transcribe"}
)
pprint(prediction)
break
print("""### RAW ###""")
pipe = pipeline(model=model_alias,
punctuator=False,
stable_ts=False,
chunk_length_s=15,
batch_size=16,
trust_remote_code=True)
dataset = load_dataset("kotoba-tech/kotoba-whisper-eval", split="train")
for i in dataset:
if i["audio"]["path"] == "long_interview_1.mp3":
i["audio"]["array"] = i["audio"]["array"][:7938000]
prediction = pipe(
i["audio"],
generate_kwargs={"language": "japanese", "task": "transcribe"}
)
pprint(prediction)
break
|