Automatic Speech Recognition
Transformers
Safetensors
Japanese
whisper
audio
hf-asr-leaderboard
Inference Endpoints
File size: 4,998 Bytes
fb72b03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from pprint import pprint
from datasets import load_dataset
from transformers.pipelines import pipeline

model_alias = "kotoba-tech/kotoba-whisper-v1.1"

print("""### P + S ###""")
pipe = pipeline(model=model_alias,
                punctuator=True,
                stable_ts=True,
                chunk_length_s=15,
                batch_size=16,
                trust_remote_code=True)
dataset = load_dataset("kotoba-tech/kotoba-whisper-eval", split="train")
for i in dataset:
    if i["audio"]["path"] == "long_interview_1.mp3":
        i["audio"]["array"] = i["audio"]["array"][:7938000]
    prediction = pipe(
        i["audio"],
        return_timestamps=True,
        generate_kwargs={"language": "japanese", "task": "transcribe"}
    )
    pprint(prediction)
    break

print("""### P ###""")
pipe = pipeline(model=model_alias,
                punctuator=True,
                stable_ts=False,
                chunk_length_s=15,
                batch_size=16,
                trust_remote_code=True)
dataset = load_dataset("kotoba-tech/kotoba-whisper-eval", split="train")
for i in dataset:
    if i["audio"]["path"] == "long_interview_1.mp3":
        i["audio"]["array"] = i["audio"]["array"][:7938000]
    prediction = pipe(
        i["audio"],
        return_timestamps=True,
        generate_kwargs={"language": "japanese", "task": "transcribe"}
    )
    pprint(prediction)
    break

print("""### S ###""")
pipe = pipeline(model=model_alias,
                punctuator=False,
                stable_ts=True,
                chunk_length_s=15,
                batch_size=16,
                trust_remote_code=True)
dataset = load_dataset("kotoba-tech/kotoba-whisper-eval", split="train")
for i in dataset:
    if i["audio"]["path"] == "long_interview_1.mp3":
        i["audio"]["array"] = i["audio"]["array"][:7938000]
    prediction = pipe(
        i["audio"],
        return_timestamps=True,
        generate_kwargs={"language": "japanese", "task": "transcribe"}
    )
    pprint(prediction)
    break

print("""### RAW ###""")
pipe = pipeline(model=model_alias,
                punctuator=False,
                stable_ts=False,
                chunk_length_s=15,
                batch_size=16,
                trust_remote_code=True)
dataset = load_dataset("kotoba-tech/kotoba-whisper-eval", split="train")
for i in dataset:
    if i["audio"]["path"] == "long_interview_1.mp3":
        i["audio"]["array"] = i["audio"]["array"][:7938000]
    prediction = pipe(
        i["audio"],
        return_timestamps=True,
        generate_kwargs={"language": "japanese", "task": "transcribe"}
    )
    pprint(prediction)
    break

print("""### P + S ###""")
pipe = pipeline(model=model_alias,
                punctuator=True,
                stable_ts=True,
                chunk_length_s=15,
                batch_size=16,
                trust_remote_code=True)
dataset = load_dataset("kotoba-tech/kotoba-whisper-eval", split="train")
for i in dataset:
    if i["audio"]["path"] == "long_interview_1.mp3":
        i["audio"]["array"] = i["audio"]["array"][:7938000]
    prediction = pipe(
        i["audio"],
        generate_kwargs={"language": "japanese", "task": "transcribe"}
    )
    pprint(prediction)
    break

print("""### P ###""")
pipe = pipeline(model=model_alias,
                punctuator=True,
                stable_ts=False,
                chunk_length_s=15,
                batch_size=16,
                trust_remote_code=True)
dataset = load_dataset("kotoba-tech/kotoba-whisper-eval", split="train")
for i in dataset:
    if i["audio"]["path"] == "long_interview_1.mp3":
        i["audio"]["array"] = i["audio"]["array"][:7938000]
    prediction = pipe(
        i["audio"],
        generate_kwargs={"language": "japanese", "task": "transcribe"}
    )
    pprint(prediction)
    break

print("""### S ###""")
pipe = pipeline(model=model_alias,
                punctuator=False,
                stable_ts=True,
                chunk_length_s=15,
                batch_size=16,
                trust_remote_code=True)
dataset = load_dataset("kotoba-tech/kotoba-whisper-eval", split="train")
for i in dataset:
    if i["audio"]["path"] == "long_interview_1.mp3":
        i["audio"]["array"] = i["audio"]["array"][:7938000]
    prediction = pipe(
        i["audio"],
        generate_kwargs={"language": "japanese", "task": "transcribe"}
    )
    pprint(prediction)
    break

print("""### RAW ###""")
pipe = pipeline(model=model_alias,
                punctuator=False,
                stable_ts=False,
                chunk_length_s=15,
                batch_size=16,
                trust_remote_code=True)
dataset = load_dataset("kotoba-tech/kotoba-whisper-eval", split="train")
for i in dataset:
    if i["audio"]["path"] == "long_interview_1.mp3":
        i["audio"]["array"] = i["audio"]["array"][:7938000]
    prediction = pipe(
        i["audio"],
        generate_kwargs={"language": "japanese", "task": "transcribe"}
    )
    pprint(prediction)
    break