File size: 46,250 Bytes
7de23e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
---
base_model: BAAI/bge-base-en-v1.5
datasets: []
language: []
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:76
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
widget:
- source_sentence: ply C Tris  pH8.0 Dextran Trehalose dNTPS Na2 SO4 Triton X-100
  sentences:
  - NE
  - Assignee
  - ID  NO
- source_sentence: Certain  isothermal  amplification  methods  are  able  to amplify
    a target nucleic  acid from  trace levels to  very high  25 and  detectable  levels  within  a  matter  of  minutes.  Such
    isothermal  methods,  e.g.,  Nicking  and  Extension Amplifi cation Reaction  (NEAR),  allow
    users  to  detect  a  particular nucleotide  sequence in trace  amounts,  facilitating
    point-of care  testing  and  increasing  the  accessibility  and  speed  of diagnostics.
    Streptococcus pyogenes is  the causative agent of group A streptococcal  (GAS)  infections  such  as  pharyngitis,  impe
    tigo,  and  life-threatening  necrotizing  fasciitis  and  sepsis. The  most  common  GAS  infection,  pharyngitis,  can  be
    diagnosed by collecting a throat swab sample from a patient and culturing the
    sample under conditions that would enable bacterial,  specifically S.  pyogenes,  growth,
    which takes 2-3 days.  Culturing  S.  pyogenes  is  an  accurate  and  reliable
    method of diagnosing GAS,  but it  is  slow. A 2-3  day delay in prescribing appropriate  antibiotic
    treatment can result in unnecessary patient suffering and potentially the onset
    oflife threatening conditions such as rheumatic fever.  In the recent past, biochemical
    methods have been developed to detect S. pyogenes,  but these  methods  do  not  provide  the  necessary
    characteristics  to  be  deployed  in  the  point-of-care  setting, either due  to  a  lack
    of sensitivity  or time to  result  (speed). Accordingly, a highly sensitive and
    rapid qualitative assay for the detection and diagnosis of a S.  pyogenes infection
    is desired.
  sentences:
  - ABSTRACT
  - TACTGTTCCTGTTTGA
  - BACKGROUND
- source_sentence: W02010/141940 12/2010 CA (US)
  sentences:
  - WO
  - DESCRIPTION OF  DRAWINGS
  - SUMMARY
- source_sentence: 9 6 nucleotide sequence at least 80,  85  or 95%  identity to  SEQ
  sentences:
  - '2'
  - NEAR
  - Ph.  Dissertation published Jan.  1,  2008.  (Year
- source_sentence: One potential inhibitor of the NEAR technology is human gDNA.  When  a  throat  swab  sample  is  collected  from  a
    patient  symptomatic  for  GAS  infection,  it  is  possible  that human gDNA
    is  also  collected on the  swab  (from immune cells such as white blood cells
    or from local epithelial cells). In order to  assess the  impact that human gDNA
    has on the GAS  assay,  a  study  was  performed  using  three  different levels  of
    GAS  gDNA  (25,  250  and  1000  copies)  in  the presence of 0,  10,  50,  100,  250,  500  or  1000
    ng  of human gDNA. As  shown in FIG.  6,  the presence of human gDNA does  have  an  impact  on
    GAS  assay  performance,  and  the impact is  GAS  target concentration dependent.  When
    there is  a low copy number of target GAS present in the reaction, 10  ng  of
    human  gDNA  or  more  significantly  inhibits  the assay. At 250 copies  of GAS
    target,  the impact of 10 ng of 60  human gDNA is  less, and at 1,000 copies of
    GAS target, the effect of 10 ng of human gDNA on the assay is  significantly less.  In
    fact,  when  1,000  copies  of target  is  present  in the assay, up to  100 ng
    of human gDNA can be tolerated, albeit with a slower amplification speed and reduced
    fluorescence signal.  Testing  of the  501  (IC  only)  mix  showed  a  more robust  response  to  human  gDNA.  When  the  501  mix  was
    tested in the presence of O copies  of target  GAS  and up  to US  10,329,601  B2
    23 1,000 ng of human gDNA, the assay still produced a clearly positive signal
    at 500 ng of human gDNA (even at 1,000 ng of human  gDNA  the  fluorescence  signal  was  still  above
    background). Other Embodiments It  is  to  be understood  that  while  the  invention
    has  been described  in  conjunction  with  the  detailed  description 24 thereof,  the  foregoing  description  is  intended  to  illustrate
    and not limit the scope of the invention, which is  defined by the scope of the
    appended claims. Other aspects, advantages, and  modifications  are  within  the  scope  of
    the  following claims.
  sentences:
  - '75'
  - TGTAGCTGACACCACCAAGCTACA
  - Impact  of Human Genomic  DNA (gDNA)  on GAS Assay
model-index:
- name: SentenceTransformer based on BAAI/bge-base-en-v1.5
  results:
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 768
      type: dim_768
    metrics:
    - type: cosine_accuracy@1
      value: 0.625
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.875
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 1.0
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 1.0
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.625
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.29166666666666663
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.2
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.1
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.625
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.875
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 1.0
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 1.0
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8202007889556063
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7604166666666666
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7604166666666666
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 512
      type: dim_512
    metrics:
    - type: cosine_accuracy@1
      value: 0.625
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.875
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.875
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 1.0
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.625
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.29166666666666663
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17500000000000002
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.1
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.625
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.875
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.875
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 1.0
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.810892117584935
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.75
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.75
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 256
      type: dim_256
    metrics:
    - type: cosine_accuracy@1
      value: 0.625
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.875
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 0.875
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 1.0
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.625
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.29166666666666663
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.17500000000000002
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.1
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.625
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.875
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 0.875
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 1.0
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8057993287946483
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.7447916666666666
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.7447916666666666
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 128
      type: dim_128
    metrics:
    - type: cosine_accuracy@1
      value: 0.75
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.875
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 1.0
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 1.0
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.75
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.29166666666666663
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.2
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.1
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.75
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.875
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 1.0
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 1.0
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8608566009043177
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8166666666666667
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8166666666666667
      name: Cosine Map@100
  - task:
      type: information-retrieval
      name: Information Retrieval
    dataset:
      name: dim 64
      type: dim_64
    metrics:
    - type: cosine_accuracy@1
      value: 0.75
      name: Cosine Accuracy@1
    - type: cosine_accuracy@3
      value: 0.875
      name: Cosine Accuracy@3
    - type: cosine_accuracy@5
      value: 1.0
      name: Cosine Accuracy@5
    - type: cosine_accuracy@10
      value: 1.0
      name: Cosine Accuracy@10
    - type: cosine_precision@1
      value: 0.75
      name: Cosine Precision@1
    - type: cosine_precision@3
      value: 0.29166666666666663
      name: Cosine Precision@3
    - type: cosine_precision@5
      value: 0.2
      name: Cosine Precision@5
    - type: cosine_precision@10
      value: 0.1
      name: Cosine Precision@10
    - type: cosine_recall@1
      value: 0.75
      name: Cosine Recall@1
    - type: cosine_recall@3
      value: 0.875
      name: Cosine Recall@3
    - type: cosine_recall@5
      value: 1.0
      name: Cosine Recall@5
    - type: cosine_recall@10
      value: 1.0
      name: Cosine Recall@10
    - type: cosine_ndcg@10
      value: 0.8608566009043177
      name: Cosine Ndcg@10
    - type: cosine_mrr@10
      value: 0.8166666666666667
      name: Cosine Mrr@10
    - type: cosine_map@100
      value: 0.8166666666666667
      name: Cosine Map@100
---

# SentenceTransformer based on BAAI/bge-base-en-v1.5

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("kr-manish/fine-tuned-bge-base-raw_pdf-v1")
# Run inference
sentences = [
    'One potential inhibitor of the NEAR technology is human gDNA.  When  a  throat  swab  sample  is  collected  from  a patient  symptomatic  for  GAS  infection,  it  is  possible  that human gDNA is  also  collected on the  swab  (from immune cells such as white blood cells or from local epithelial cells). In order to  assess the  impact that human gDNA has on the GAS  assay,  a  study  was  performed  using  three  different levels  of GAS  gDNA  (25,  250  and  1000  copies)  in  the presence of 0,  10,  50,  100,  250,  500  or  1000 ng  of human gDNA. As  shown in FIG.  6,  the presence of human gDNA does  have  an  impact  on GAS  assay  performance,  and  the impact is  GAS  target concentration dependent.  When there is  a low copy number of target GAS present in the reaction, 10  ng  of human  gDNA  or  more  significantly  inhibits  the assay. At 250 copies  of GAS target,  the impact of 10 ng of 60  human gDNA is  less, and at 1,000 copies of GAS target, the effect of 10 ng of human gDNA on the assay is  significantly less.  In fact,  when  1,000  copies  of target  is  present  in the assay, up to  100 ng of human gDNA can be tolerated, albeit with a slower amplification speed and reduced fluorescence signal.  Testing  of the  501  (IC  only)  mix  showed  a  more robust  response  to  human  gDNA.  When  the  501  mix  was tested in the presence of O copies  of target  GAS  and up  to US  10,329,601  B2 23 1,000 ng of human gDNA, the assay still produced a clearly positive signal at 500 ng of human gDNA (even at 1,000 ng of human  gDNA  the  fluorescence  signal  was  still  above background). Other Embodiments It  is  to  be understood  that  while  the  invention has  been described  in  conjunction  with  the  detailed  description 24 thereof,  the  foregoing  description  is  intended  to  illustrate and not limit the scope of the invention, which is  defined by the scope of the appended claims. Other aspects, advantages, and  modifications  are  within  the  scope  of the  following claims.',
    'Impact  of Human Genomic  DNA (gDNA)  on GAS Assay',
    'TGTAGCTGACACCACCAAGCTACA',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Information Retrieval
* Dataset: `dim_768`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.625      |
| cosine_accuracy@3   | 0.875      |
| cosine_accuracy@5   | 1.0        |
| cosine_accuracy@10  | 1.0        |
| cosine_precision@1  | 0.625      |
| cosine_precision@3  | 0.2917     |
| cosine_precision@5  | 0.2        |
| cosine_precision@10 | 0.1        |
| cosine_recall@1     | 0.625      |
| cosine_recall@3     | 0.875      |
| cosine_recall@5     | 1.0        |
| cosine_recall@10    | 1.0        |
| cosine_ndcg@10      | 0.8202     |
| cosine_mrr@10       | 0.7604     |
| **cosine_map@100**  | **0.7604** |

#### Information Retrieval
* Dataset: `dim_512`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value    |
|:--------------------|:---------|
| cosine_accuracy@1   | 0.625    |
| cosine_accuracy@3   | 0.875    |
| cosine_accuracy@5   | 0.875    |
| cosine_accuracy@10  | 1.0      |
| cosine_precision@1  | 0.625    |
| cosine_precision@3  | 0.2917   |
| cosine_precision@5  | 0.175    |
| cosine_precision@10 | 0.1      |
| cosine_recall@1     | 0.625    |
| cosine_recall@3     | 0.875    |
| cosine_recall@5     | 0.875    |
| cosine_recall@10    | 1.0      |
| cosine_ndcg@10      | 0.8109   |
| cosine_mrr@10       | 0.75     |
| **cosine_map@100**  | **0.75** |

#### Information Retrieval
* Dataset: `dim_256`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.625      |
| cosine_accuracy@3   | 0.875      |
| cosine_accuracy@5   | 0.875      |
| cosine_accuracy@10  | 1.0        |
| cosine_precision@1  | 0.625      |
| cosine_precision@3  | 0.2917     |
| cosine_precision@5  | 0.175      |
| cosine_precision@10 | 0.1        |
| cosine_recall@1     | 0.625      |
| cosine_recall@3     | 0.875      |
| cosine_recall@5     | 0.875      |
| cosine_recall@10    | 1.0        |
| cosine_ndcg@10      | 0.8058     |
| cosine_mrr@10       | 0.7448     |
| **cosine_map@100**  | **0.7448** |

#### Information Retrieval
* Dataset: `dim_128`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.75       |
| cosine_accuracy@3   | 0.875      |
| cosine_accuracy@5   | 1.0        |
| cosine_accuracy@10  | 1.0        |
| cosine_precision@1  | 0.75       |
| cosine_precision@3  | 0.2917     |
| cosine_precision@5  | 0.2        |
| cosine_precision@10 | 0.1        |
| cosine_recall@1     | 0.75       |
| cosine_recall@3     | 0.875      |
| cosine_recall@5     | 1.0        |
| cosine_recall@10    | 1.0        |
| cosine_ndcg@10      | 0.8609     |
| cosine_mrr@10       | 0.8167     |
| **cosine_map@100**  | **0.8167** |

#### Information Retrieval
* Dataset: `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)

| Metric              | Value      |
|:--------------------|:-----------|
| cosine_accuracy@1   | 0.75       |
| cosine_accuracy@3   | 0.875      |
| cosine_accuracy@5   | 1.0        |
| cosine_accuracy@10  | 1.0        |
| cosine_precision@1  | 0.75       |
| cosine_precision@3  | 0.2917     |
| cosine_precision@5  | 0.2        |
| cosine_precision@10 | 0.1        |
| cosine_recall@1     | 0.75       |
| cosine_recall@3     | 0.875      |
| cosine_recall@5     | 1.0        |
| cosine_recall@10    | 1.0        |
| cosine_ndcg@10      | 0.8609     |
| cosine_mrr@10       | 0.8167     |
| **cosine_map@100**  | **0.8167** |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### Unnamed Dataset


* Size: 76 training samples
* Columns: <code>positive</code> and <code>anchor</code>
* Approximate statistics based on the first 1000 samples:
  |         | positive                                                                            | anchor                                                                           |
  |:--------|:------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
  | type    | string                                                                              | string                                                                           |
  | details | <ul><li>min: 8 tokens</li><li>mean: 148.89 tokens</li><li>max: 512 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 6.54 tokens</li><li>max: 18 tokens</li></ul> |
* Samples:
  | positive                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | anchor                                                          |
  |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------|
  | <code>1  (AGACTCCATATGGAGTCTAGC CAAACAGGAACA);  a  reverse  template  comprising  a nucleotide  sequence having at  least 80,  85  or 95%  identity  55 (CGACTCCATATGGAGTC to GAAAGCAATCTGAGGA);  and  a  probe  oligonucleotide comprising  a  nucleotide  sequence  at  least  80,  85  or  95%</code>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <code>to  SEQ  ID  NO</code>                                    |
  | <code>One potential inhibitor of the NEAR technology is human gDNA.  When  a  throat  swab  sample  is  collected  from  a patient  symptomatic  for  GAS  infection,  it  is  possible  that human gDNA is  also  collected on the  swab  (from immune cells such as white blood cells or from local epithelial cells). In order to  assess the  impact that human gDNA has on the GAS  assay,  a  study  was  performed  using  three  different levels  of GAS  gDNA  (25,  250  and  1000  copies)  in  the presence of 0,  10,  50,  100,  250,  500  or  1000 ng  of human gDNA. As  shown in FIG.  6,  the presence of human gDNA does  have  an  impact  on GAS  assay  performance,  and  the impact is  GAS  target concentration dependent.  When there is  a low copy number of target GAS present in the reaction, 10  ng  of human  gDNA  or  more  significantly  inhibits  the assay. At 250 copies  of GAS target,  the impact of 10 ng of 60  human gDNA is  less, and at 1,000 copies of GAS target, the effect of 10 ng of human gDNA on the assay is  significantly less.  In fact,  when  1,000  copies  of target  is  present  in the assay, up to  100 ng of human gDNA can be tolerated, albeit with a slower amplification speed and reduced fluorescence signal.  Testing  of the  501  (IC  only)  mix  showed  a  more robust  response  to  human  gDNA.  When  the  501  mix  was tested in the presence of O copies  of target  GAS  and up  to US  10,329,601  B2 23 1,000 ng of human gDNA, the assay still produced a clearly positive signal at 500 ng of human gDNA (even at 1,000 ng of human  gDNA  the  fluorescence  signal  was  still  above background). Other Embodiments It  is  to  be understood  that  while  the  invention has  been described  in  conjunction  with  the  detailed  description 24 thereof,  the  foregoing  description  is  intended  to  illustrate and not limit the scope of the invention, which is  defined by the scope of the appended claims. Other aspects, advantages, and  modifications  are  within  the  scope  of the  following claims.</code>                                                                                                                                                                                                                                                                                      | <code>Impact  of Human Genomic  DNA (gDNA)  on GAS Assay</code> |
  | <code>25C-4x  lyophilization  mix,  single tube assay format;  50C-2x lyophilization mix,  single tube assay  format;  25T-4x  lyophilization  mix,  target  assay only;  50T-2x lyophilization mix,  target assay only;  25I- 4x lyophilization mix, IC assay only; 50I-2x lyophilization mix,  internal  control  (IC)  assay  only. The  GAS  NEAR  assay  can  be  run  on  an  appropriate platform. For example, the GAS NEAR assay can be run on an Al ere i platform (www.alere.com/ww/en/product-details/ alere-i-strep-a.html). AnA!ere i system consists of an instru ment  which  provides  heating,  mixing  and  fluorescence detection with automated result output,  and a set  of dispos ables,  consisting  of the  sample receiver  (where  the elution buffer  is  stored),  a  test  base  ( containing  two  tubes  of lyophilized NEAR reagents) and a transfer device ( designed to  transfer 100 µI  aliquots of eluted sample from the sample receiver  to  each  of the  two  tubes  containing  lyophilized NEAR  reagents  located  in  the  test  base).  Suitable  dispos ables for use with the Alere i GAS NEAR test include those 60  described in,  for example U.S.  application Ser.  No.  13/242, 999,  incorporated herein by reference  in its  entirety. In addition to containing the reagents necessary for driv ing  the  GAS  NEAR  assay,  the  lyophilized  material  also contains the lytic agent for GAS, the protein plyC; therefore, 65  GAS  lysis  does  not  occur until  the  lyophilized  material  is re-suspended.  In some  cases,  the  lyophilized material  does not  contain  a  lytic  agent  for  GAS,  for  example,  in  some US  10,329,601  B2 19 examples,  the  lyophilized  material  does  not  contain  the protein plyC.  The elution buffer was  designed to  allow  for the  rapid  release  of GAS  organisms  from  clinical  sample throat  swabs  as  well  as  to  provide  the  necessary  salts  for driving the NEAR assay (both MgSO4 and (NH4)2SO4), in  5 a  slightly basic environment.  In some examples, the elution buffer also  includes  an anti-microbial  agent or preservative (e.g.,  ProClin®  950). For the present examples, GAS assay was performed as  a two tube assay-a GAS target specific assay in one tube, and an internal control (IC) assay in a second tube (tested side by side  on the Alere  i).</code> | <code>annotated  as  follows</code>                             |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
  ```json
  {
      "loss": "MultipleNegativesRankingLoss",
      "matryoshka_dims": [
          768,
          512,
          256,
          128,
          64
      ],
      "matryoshka_weights": [
          1,
          1,
          1,
          1,
          1
      ],
      "n_dims_per_step": -1
  }
  ```

### Training Hyperparameters
#### Non-Default Hyperparameters

- `eval_strategy`: epoch
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `gradient_accumulation_steps`: 16
- `learning_rate`: 3e-05
- `num_train_epochs`: 40
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.2
- `fp16`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused

#### All Hyperparameters
<details><summary>Click to expand</summary>

- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 16
- `per_device_eval_batch_size`: 16
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `learning_rate`: 3e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 40
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.2
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: False
- `fp16`: True
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: None
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: False
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`: 
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `batch_sampler`: batch_sampler
- `multi_dataset_batch_sampler`: proportional

</details>

### Training Logs
| Epoch    | Step   | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_512_cosine_map@100 | dim_64_cosine_map@100 | dim_768_cosine_map@100 |
|:--------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|
| 0        | 0      | -             | 0.2103                 | 0.1702                 | 0.1888                 | 0.1783                | 0.1815                 |
| 1.0      | 1      | -             | 0.2102                 | 0.1702                 | 0.1888                 | 0.1783                | 0.1815                 |
| 2.0      | 2      | -             | 0.2104                 | 0.1705                 | 0.1890                 | 0.1797                | 0.1815                 |
| 3.0      | 3      | -             | 0.2841                 | 0.1733                 | 0.2524                 | 0.1997                | 0.2465                 |
| 4.0      | 5      | -             | 0.3285                 | 0.2747                 | 0.2865                 | 0.3281                | 0.2901                 |
| 5.0      | 6      | -             | 0.3311                 | 0.3045                 | 0.2996                 | 0.3930                | 0.3001                 |
| 6.0      | 7      | -             | 0.3948                 | 0.3808                 | 0.3193                 | 0.4576                | 0.3147                 |
| 7.0      | 9      | -             | 0.5308                 | 0.4366                 | 0.4222                 | 0.5445                | 0.4367                 |
| 8.0      | 10     | 3.233         | 0.5352                 | 0.5240                 | 0.5224                 | 0.5867                | 0.4591                 |
| 9.0      | 11     | -             | 0.5438                 | 0.5864                 | 0.5228                 | 0.6519                | 0.6475                 |
| 10.0     | 13     | -             | 0.6540                 | 0.5906                 | 0.6554                 | 0.6684                | 0.6511                 |
| 11.0     | 14     | -             | 0.6585                 | 0.6020                 | 0.6684                 | 0.6857                | 0.6621                 |
| 12.0     | 15     | -             | 0.6632                 | 0.6661                 | 0.6798                 | 0.7063                | 0.6685                 |
| 13.0     | 17     | -             | 0.7292                 | 0.7210                 | 0.6971                 | 0.7396                | 0.7062                 |
| 14.0     | 18     | -             | 0.7396                 | 0.7375                 | 0.7229                 | 0.8333                | 0.7068                 |
| 15.0     | 19     | -             | 0.75                   | 0.7438                 | 0.7021                 | 0.8333                | 0.7083                 |
| 16.0     | 20     | 1.4113        | 0.7604                 | 0.7292                 | 0.7042                 | 0.8229                | 0.7104                 |
| 17.0     | 21     | -             | 0.7542                 | 0.7262                 | 0.7095                 | 0.8229                | 0.7158                 |
| 18.0     | 22     | -             | 0.7438                 | 0.7344                 | 0.7054                 | 0.8167                | 0.7188                 |
| 19.0     | 23     | -             | 0.8063                 | 0.7344                 | 0.7125                 | 0.8125                | 0.7021                 |
| 20.0     | 25     | -             | 0.7958                 | 0.7344                 | 0.7262                 | 0.8125                | 0.7333                 |
| 21.0     | 26     | -             | 0.8021                 | 0.7344                 | 0.7470                 | 0.8095                | 0.7333                 |
| 22.0     | 27     | -             | 0.8021                 | 0.7344                 | 0.7470                 | 0.8095                | 0.7333                 |
| 23.0     | 29     | -             | 0.8021                 | 0.7344                 | 0.7470                 | 0.8095                | 0.7438                 |
| 24.0     | 30     | 0.6643        | 0.8021                 | 0.7448                 | 0.7470                 | 0.8125                | 0.7438                 |
| 25.0     | 31     | -             | 0.8125                 | 0.7448                 | 0.7470                 | 0.8125                | 0.7604                 |
| 26.0     | 33     | -             | 0.8125                 | 0.7448                 | 0.75                   | 0.8167                | 0.7604                 |
| 27.0     | 34     | -             | 0.8125                 | 0.7448                 | 0.75                   | 0.8167                | 0.7604                 |
| 28.0     | 35     | -             | 0.8125                 | 0.7448                 | 0.75                   | 0.8167                | 0.7604                 |
| **29.0** | **37** | **-**         | **0.8167**             | **0.7448**             | **0.75**               | **0.8167**            | **0.7604**             |
| 30.0     | 38     | -             | 0.8167                 | 0.7448                 | 0.75                   | 0.8167                | 0.7604                 |
| 31.0     | 39     | -             | 0.8167                 | 0.7448                 | 0.75                   | 0.8167                | 0.7604                 |
| 32.0     | 40     | 0.4648        | 0.8167                 | 0.7448                 | 0.75                   | 0.8167                | 0.7604                 |

* The bold row denotes the saved checkpoint.

### Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.1+cu121
- Accelerate: 0.32.1
- Datasets: 2.20.0
- Tokenizers: 0.19.1

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
    title={Matryoshka Representation Learning}, 
    author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
    year={2024},
    eprint={2205.13147},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}
```

#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply}, 
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->