--- license: apache-2.0 base_model: microsoft/swin-tiny-patch4-window7-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swin-tiny-patch4-window7-224-finetuned-eurosat results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.8111298482293423 --- # swin-tiny-patch4-window7-224-finetuned-eurosat This model is a fine-tuned version of [microsoft/swin-tiny-patch4-window7-224](https://huggingface.co/microsoft/swin-tiny-patch4-window7-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4435 - Accuracy: 0.8111 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5077 | 0.98 | 41 | 0.6378 | 0.6796 | | 0.5111 | 1.99 | 83 | 0.7097 | 0.6577 | | 0.5395 | 2.99 | 125 | 0.5374 | 0.7470 | | 0.5498 | 4.0 | 167 | 0.5524 | 0.7420 | | 0.4754 | 4.98 | 208 | 0.5324 | 0.7639 | | 0.4662 | 5.99 | 250 | 0.4962 | 0.7639 | | 0.4677 | 6.99 | 292 | 0.5070 | 0.7774 | | 0.4525 | 8.0 | 334 | 0.5144 | 0.7673 | | 0.4635 | 8.98 | 375 | 0.4978 | 0.7757 | | 0.4309 | 9.99 | 417 | 0.5388 | 0.7774 | | 0.4292 | 10.99 | 459 | 0.4937 | 0.7825 | | 0.4182 | 12.0 | 501 | 0.5234 | 0.7808 | | 0.4242 | 12.98 | 542 | 0.4539 | 0.7960 | | 0.4053 | 13.99 | 584 | 0.5089 | 0.7858 | | 0.4135 | 14.99 | 626 | 0.4655 | 0.8044 | | 0.3888 | 16.0 | 668 | 0.4398 | 0.8212 | | 0.3701 | 16.98 | 709 | 0.4258 | 0.8145 | | 0.3641 | 17.99 | 751 | 0.4339 | 0.8196 | | 0.3547 | 18.99 | 793 | 0.4556 | 0.7993 | | 0.3623 | 19.64 | 820 | 0.4435 | 0.8111 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0