Update handler.py
Browse files- handler.py +10 -23
handler.py
CHANGED
@@ -1,19 +1,21 @@
|
|
1 |
-
|
2 |
from diffusers import AutoPipelineForText2Image
|
3 |
import torch
|
4 |
-
from PIL import Image
|
5 |
-
import base64
|
6 |
-
from io import BytesIO
|
7 |
|
8 |
class EndpointHandler:
|
9 |
def __init__(self, path: str = ""):
|
10 |
"""
|
11 |
Initialize the handler, loading the model and LoRA weights.
|
12 |
-
The path parameter is provided by Hugging Face Inference Endpoints to point to the model directory.
|
13 |
"""
|
14 |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
|
|
|
|
|
|
|
|
|
|
15 |
self.pipeline = AutoPipelineForText2Image.from_pretrained(
|
16 |
-
'black-forest-labs/FLUX.1-dev',
|
|
|
17 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
18 |
).to(self.device)
|
19 |
|
@@ -21,25 +23,10 @@ class EndpointHandler:
|
|
21 |
lora_weights_path = 'krtk00/pan_crd_lora_v2'
|
22 |
self.pipeline.load_lora_weights(lora_weights_path, weight_name='lora.safetensors')
|
23 |
|
24 |
-
def __call__(self, data
|
25 |
-
"""
|
26 |
-
This method will be called on every request. The input is expected to be a dictionary
|
27 |
-
with a key "inputs" containing the text prompt.
|
28 |
-
"""
|
29 |
-
# Preprocess input
|
30 |
prompt = data.get("inputs", None)
|
31 |
if not prompt:
|
32 |
raise ValueError("No prompt provided in the input")
|
33 |
-
|
34 |
-
# Run inference
|
35 |
with torch.no_grad():
|
36 |
images = self.pipeline(prompt).images
|
37 |
-
|
38 |
-
# Postprocess output: Convert image to base64
|
39 |
-
pil_image = images[0] # Assuming one image is generated
|
40 |
-
buffered = BytesIO()
|
41 |
-
pil_image.save(buffered, format="PNG")
|
42 |
-
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
43 |
-
|
44 |
-
# Return result
|
45 |
-
return {"image": img_str}
|
|
|
1 |
+
import os
|
2 |
from diffusers import AutoPipelineForText2Image
|
3 |
import torch
|
|
|
|
|
|
|
4 |
|
5 |
class EndpointHandler:
|
6 |
def __init__(self, path: str = ""):
|
7 |
"""
|
8 |
Initialize the handler, loading the model and LoRA weights.
|
|
|
9 |
"""
|
10 |
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
11 |
+
|
12 |
+
# Retrieve the Hugging Face token from environment variable
|
13 |
+
hf_token = os.getenv("HF_TOKEN") # Ensure HF_TOKEN is set in environment
|
14 |
+
|
15 |
+
# Load the model using the token
|
16 |
self.pipeline = AutoPipelineForText2Image.from_pretrained(
|
17 |
+
'black-forest-labs/FLUX.1-dev',
|
18 |
+
use_auth_token=hf_token,
|
19 |
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32
|
20 |
).to(self.device)
|
21 |
|
|
|
23 |
lora_weights_path = 'krtk00/pan_crd_lora_v2'
|
24 |
self.pipeline.load_lora_weights(lora_weights_path, weight_name='lora.safetensors')
|
25 |
|
26 |
+
def __call__(self, data):
|
|
|
|
|
|
|
|
|
|
|
27 |
prompt = data.get("inputs", None)
|
28 |
if not prompt:
|
29 |
raise ValueError("No prompt provided in the input")
|
|
|
|
|
30 |
with torch.no_grad():
|
31 |
images = self.pipeline(prompt).images
|
32 |
+
return {"image": images[0]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|