{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe56189d6c0>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1683044881268426281, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADzOmD/TQjc/GmkRPSjZxD+JLXU/No0rwCJw6D73XjC/7DPBv7G6yb88+og/9OmpPy8EYj/xbOS/P5vPvlZPFL+AFWs9M/EpPrhKHj5EQ8y+nnyzv5/PoD7+WoM+9NDgv2sMgr905gA/xwDYPtzKIj8evcI8OkUTPztOSz4iMVk9dVjuviJXpD5bBik/PECpvBrJV78nNGM95Bd+P4HkQD4gd+Q8NU38vxyX474fiTDA4fIkvuBgkD5FJCc/IS2QPL01J76KT68/KU9Bv7kfRD6u93s/Tjb+v8cA2D55Scm/u+58PyJ1Oz/NMW08BLHAP3Zurj/RlcA/9JuPP7IW2D2SpdY93C2xv9pZpz/OaPe/JI/HP32bt74PzATAfBqFPzt2Ij/h6/6/RlQDPyGpjj/d9Pa+PrvVv4HJp757GBU9awyCv3TmAD/HANg+3MoiPzEL0L3pe5i+u8A5P027uDy/n1G/c+Gbv5SIPj7Wzac/0pauv6s9JUCQ1hO/361hPzldur0fdAk/F66AvzNS3z+5+o++nmaTP2xhML/+c509cLGfv/ca0z9pgT6/9m63O2sMgr905gA/xwDYPnlJyb+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABK0R83AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHOO5vQAAAAAzRNy/AAAAAGdMvz0AAAAAwPnnPwAAAACR5cA9AAAAAC8t+z8AAAAAR0AKvgAAAAA8MPm/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJbYYNAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgMR6ZLwAAAAA1f/gvwAAAACxmZK7AAAAANv84T8AAAAAyVMBvQAAAADl3Nk/AAAAAHul77wAAAAAkVTxvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJ5/lrYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAICiaeo9AAAAAKU76b8AAAAAr+WLPQAAAAAV5Po/AAAAAKnM2r0AAAAAD1fbPwAAAABlkiY9AAAAAIz75L8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACSqcg1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAj4OFPQAAAAD5uu+/AAAAAIC29j0AAAAAnoPcPwAAAADSEIM9AAAAAMYP4T8AAAAA4FduPQAAAAD4tN2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJEE/JSzgMuMAWyUTegDjAF0lEdAtR8m0UoKD3V9lChoBkdAligAfEGZ/mgHTegDaAhHQLUirUKArhB1fZQoaAZHQJNQAHgP3BZoB03oA2gIR0C1JEO0svqUdX2UKGgGR0CPjOpG4I8haAdN6ANoCEdAtSWgV32VV3V9lChoBkdAkflGC/XXiGgHTegDaAhHQLUo0XaakRB1fZQoaAZHQJOsIZBLPD5oB03oA2gIR0C1LFmqxTsIdX2UKGgGR0CUCbedkJ8faAdN6ANoCEdAtS3u6QNkOXV9lChoBkdAkz8H36AOKGgHTegDaAhHQLUvZIiTt9h1fZQoaAZHQJHsgd2gWadoB03oA2gIR0C1Msskt29tdX2UKGgGR0CVYRHww0wbaAdN6ANoCEdAtTZv5FgDzXV9lChoBkdAlZLPV/c32mgHTegDaAhHQLU31A80UGp1fZQoaAZHQJUK0W0qpcZoB03oA2gIR0C1OTSrxRVIdX2UKGgGR0CUQh9zOopAaAdN6ANoCEdAtTx3rmhdt3V9lChoBkdAlPT+Y+jdpWgHTegDaAhHQLVALWqLjxV1fZQoaAZHQJXj40elsP9oB03oA2gIR0C1QYMyzolldX2UKGgGR0CTsDmsvIwNaAdN6ANoCEdAtUL0W2w3YXV9lChoBkdAlFu/Xbuc+mgHTegDaAhHQLVF+hLoOhF1fZQoaAZHQJPOWcnVoYhoB03oA2gIR0C1SbrJGOMmdX2UKGgGR0CSkv/gzguRaAdN6ANoCEdAtUr7r7fpEHV9lChoBkdAlFBMqOLiuWgHTegDaAhHQLVMjS6DoQp1fZQoaAZHQJMx959mYjVoB03oA2gIR0C1T+AvQF9sdX2UKGgGR0CQnHuJk5IZaAdN6ANoCEdAtVLImY0EYHV9lChoBkdAlGn1zIV/MGgHTegDaAhHQLVT0iTMaCN1fZQoaAZHQJOs430f5k9oB03oA2gIR0C1VM8wDeTFdX2UKGgGR0CUwG7v5P/JaAdN6ANoCEdAtVeN8UmD2HV9lChoBkdAke2IHxBmgGgHTegDaAhHQLVaMf8uSOl1fZQoaAZHQJNOzkgfU4JoB03oA2gIR0C1W3RoZhrndX2UKGgGR0CTpkSXdCVsaAdN6ANoCEdAtVy1BeHBUXV9lChoBkdAkymY/3WWhWgHTegDaAhHQLVfAyTY/V11fZQoaAZHQJSSd7gKneloB03oA2gIR0C1YixplBhQdX2UKGgGR0CQrI0qYqoZaAdN6ANoCEdAtWMzXwsoUnV9lChoBkdAkdYRbjcVQGgHTegDaAhHQLVkMEE1VHZ1fZQoaAZHQJVl40XP7eloB03oA2gIR0C1ZrlzU7SzdX2UKGgGR0CWHgOX3QD3aAdN6ANoCEdAtWmnaDf3vnV9lChoBkdAlfgGm51/2GgHTegDaAhHQLVq/gydnTR1fZQoaAZHQJTNRH6MzdloB03oA2gIR0C1bA11B+nZdX2UKGgGR0CSEmLORkmQaAdN6ANoCEdAtW5rsMRYinV9lChoBkdAk3yUz0pVj2gHTegDaAhHQLVxs6QvHtF1fZQoaAZHQJZpuTPjXFtoB03oA2gIR0C1cvM90RvndX2UKGgGR0CUC4F2V3UyaAdN6ANoCEdAtXRFD5TIenV9lChoBkdAlKQd5yEL6WgHTegDaAhHQLV3JRq46Op1fZQoaAZHQJG8fdGiHqNoB03oA2gIR0C1en313+uOdX2UKGgGR0CTkrkN4JNTaAdN6ANoCEdAtXvT4L1EmnV9lChoBkdAk0LmpuMuOGgHTegDaAhHQLV9DRtP5591fZQoaAZHQJNaTxI8QqZoB03oA2gIR0C1f//D50r9dX2UKGgGR0CTtBkXDWK/aAdN6ANoCEdAtYNJeMQ2/HV9lChoBkdAln8c8kleGGgHTegDaAhHQLWEmhBqsU91fZQoaAZHQJU6Kj/MnqpoB03oA2gIR0C1hdDd56dEdX2UKGgGR0CXSwvES/TLaAdN6ANoCEdAtYixwfhddHV9lChoBkdAlbey9Iwud2gHTegDaAhHQLWL/3+uNgl1fZQoaAZHQJb9KkN4JNVoB03oA2gIR0C1jXgyZa3adX2UKGgGR0CZJddo371qaAdN6ANoCEdAtY7fr6ciGHV9lChoBkdAmbRr+1jRUmgHTegDaAhHQLWSIOQQtjF1fZQoaAZHQJVqFdhRZU1oB03oA2gIR0C1lT101ZTydX2UKGgGR0CVzGld1MdtaAdN6ANoCEdAtZaInE2pAHV9lChoBkdAlPAemR/3FmgHTegDaAhHQLWXv/Aj6ep1fZQoaAZHQJUn5Yoy9EloB03oA2gIR0C1mpczQ/ordX2UKGgGR0CW06PRzBAOaAdN6ANoCEdAtZ3LF72L53V9lChoBkdAl84T6FdszmgHTegDaAhHQLWfAtNSIgx1fZQoaAZHQJhQjizcAR1oB03oA2gIR0C1oDJMpPRBdX2UKGgGR0CZIkU8V58jaAdN6ANoCEdAtaMbb+Lm63V9lChoBkdAk37ES26TXGgHTegDaAhHQLWmbcYqG1x1fZQoaAZHQJj85dNWU8poB03oA2gIR0C1p7tBa9sadX2UKGgGR0CYB3yTY/VzaAdN6ANoCEdAtajm7SRbKXV9lChoBkdAmKaIe9zwMGgHTegDaAhHQLWr6dyT6i11fZQoaAZHQJaEowqRU3poB03oA2gIR0C1rzqbBoEkdX2UKGgGR0CW0uSjgydnaAdN6ANoCEdAtbCq9alk6XV9lChoBkdAkT7yXY150WgHTegDaAhHQLWx+E2pAD91fZQoaAZHQJSOKzUqhDhoB03oA2gIR0C1tQ5Yoy9FdX2UKGgGR0CWfjMoc7yQaAdN6ANoCEdAtbhjAsTWXnV9lChoBkdAli/oYFaB7WgHTegDaAhHQLW5yqcVgx91fZQoaAZHQJb78yAQQMBoB03oA2gIR0C1uxPl2eQNdX2UKGgGR0CXnR7T2FnJaAdN6ANoCEdAtb3+zTnaFnV9lChoBkdAlyrp5/smfGgHTegDaAhHQLXBbopQUHp1fZQoaAZHQJMlMhUzbexoB03oA2gIR0C1wrmmHgxbdX2UKGgGR0CXWAHdoFmnaAdN6ANoCEdAtcQjKRuCPXV9lChoBkdAl4VAJ1JUYWgHTegDaAhHQLXHTEoOQQt1fZQoaAZHQJeyboFFDv5oB03oA2gIR0C1ysSaZx7zdX2UKGgGR0CYL0PsiSq3aAdN6ANoCEdAtcwOuxKQJXV9lChoBkdAlvsZSvTw2GgHTegDaAhHQLXNSRqXWvt1fZQoaAZHQJd6M6p5u65oB03oA2gIR0C10KuE7GNrdX2UKGgGR0CX9WNBnjABaAdN6ANoCEdAtdSLykKu0XV9lChoBkdAllW+HFglW2gHTegDaAhHQLXV024/eLx1fZQoaAZHQJkqvmLcbitoB03oA2gIR0C11xE4rBj4dX2UKGgGR0CYYkegte2NaAdN6ANoCEdAtdod1B+nZXV9lChoBkdAmVMY1YQrc2gHTegDaAhHQLXdiqYZ2p11fZQoaAZHQJjAV+uvECNoB03oA2gIR0C13uR1cMVldX2UKGgGR0CZqGqfOD8MaAdN6ANoCEdAteAkKzAvc3V9lChoBkdAlCM2nsLORmgHTegDaAhHQLXjLofCAMF1fZQoaAZHQJRdqgxrSE1oB03oA2gIR0C15oE21lXjdX2UKGgGR0CVZ+77Kq4paAdN6ANoCEdAtefbbXYlIHV9lChoBkdAks7g+dK/VWgHTegDaAhHQLXpNm2b5M11fZQoaAZHQJHSmmYSg5BoB03oA2gIR0C17CdBa9sadX2UKGgGR0CVbeNxEORUaAdN6ANoCEdAte9qx3V093V9lChoBkdAlUkDI3irDWgHTegDaAhHQLXwyBHTZxt1fZQoaAZHQJF0dk9U0eloB03oA2gIR0C18gw7YChfdX2UKGgGR0CXapW1+iJwaAdN6ANoCEdAtfTdH2AXmHV9lChoBkdAmDL/3evZAmgHTegDaAhHQLX4TEFW4mV1fZQoaAZHQJe50LpiZv1oB03oA2gIR0C1+Yx7AtWddX2UKGgGR0CYYWGjKxLTaAdN6ANoCEdAtfrczWPLgXVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.29 # 1 SMP Fri Jan 27 02:56:13 UTC 2023", "Python": "3.8.10", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu117", "GPU Enabled": "False", "Numpy": "1.23.4", "Gym": "0.21.0"}}