Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +13 -13
- a2c-PandaReachDense-v2/policy.optimizer.pth +2 -2
- a2c-PandaReachDense-v2/policy.pth +2 -2
- a2c-PandaReachDense-v2/system_info.txt +1 -1
- config.json +1 -1
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -4.33 +/- 0.94
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2589a63ebf73bed513409094752a11b539921047d148a71d05566e0205a57a71
|
3 |
+
size 107732
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -41,12 +41,12 @@
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
-
"num_timesteps":
|
45 |
-
"_total_timesteps":
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
@@ -55,10 +55,10 @@
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "
|
59 |
-
"achieved_goal": "[[0.
|
60 |
-
"desired_goal": "[[
|
61 |
-
"observation": "[[ 0.
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,9 +66,9 @@
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
@@ -77,13 +77,13 @@
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
-
"_n_updates":
|
87 |
"n_steps": 5,
|
88 |
"gamma": 0.99,
|
89 |
"gae_lambda": 1.0,
|
|
|
4 |
":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fb29adf03a0>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7fb29adf10c0>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
+
"num_timesteps": 1164000,
|
45 |
+
"_total_timesteps": 1164000,
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
+
"start_time": 1674287287137999001,
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAezEUP98DXz0VUgs/ezEUP98DXz0VUgs/ezEUP98DXz0VUgs/ezEUP98DXz0VUgs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAK2YXv7pTWT/9HiU/f8FeP7janT+nTbg/qV2wPxQtyD4GYMy/WEVzvyRsyb/FqgW/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB7MRQ/3wNfPRVSCz+Ci188ViytOmNgWzx7MRQ/3wNfPRVSCz+Ci188ViytOmNgWzx7MRQ/3wNfPRVSCz+Ci188ViytOmNgWzx7MRQ/3wNfPRVSCz+Ci188ViytOmNgWzyUaA5LBEsGhpRoEnSUUpR1Lg==",
|
59 |
+
"achieved_goal": "[[0.57888 0.05444705 0.5442212 ]\n [0.57888 0.05444705 0.5442212 ]\n [0.57888 0.05444705 0.5442212 ]\n [0.57888 0.05444705 0.5442212 ]]",
|
60 |
+
"desired_goal": "[[-0.5914027 0.8489338 0.6450041 ]\n [ 0.87014 1.2332373 1.4398698 ]\n [ 1.3778583 0.39096892 -1.5966804 ]\n [-0.95027685 -1.5736127 -0.522137 ]]",
|
61 |
+
"observation": "[[0.57888 0.05444705 0.5442212 0.0136441 0.00132121 0.01338968]\n [0.57888 0.05444705 0.5442212 0.0136441 0.00132121 0.01338968]\n [0.57888 0.05444705 0.5442212 0.0136441 0.00132121 0.01338968]\n [0.57888 0.05444705 0.5442212 0.0136441 0.00132121 0.01338968]]"
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA0OPXPbl5GD5yIAg+gN7bvf2IIb1EkBE+EKkSvhMfI73IbZk++sXpvewoPj3s1UE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[ 0.10541499 0.14890184 0.13293627]\n [-0.10735798 -0.03943728 0.14215189]\n [-0.14322305 -0.03982456 0.2996657 ]\n [-0.11414714 0.04642574 0.18929261]]",
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBOPg0jHnFsCUhpRSlIwBbJRLMowBdJRHQKu7Ce4kNWl1fZQoaAZoCWgPQwiBsb6ByU0NwJSGlFKUaBVLMmgWR0CrurNPHktFdX2UKGgGaAloD0MIJ9h/nZu2DsCUhpRSlGgVSzJoFkdAq7pTn7pFC3V9lChoBmgJaA9DCAVvSKMCdxLAlIaUUpRoFUsyaBZHQKu6AxPfsNV1fZQoaAZoCWgPQwjXpNsSuUAUwJSGlFKUaBVLMmgWR0CrvBI1UEPldX2UKGgGaAloD0MIPITx07hnHMCUhpRSlGgVSzJoFkdAq7u792ovSXV9lChoBmgJaA9DCFn8prBSYQnAlIaUUpRoFUsyaBZHQKu7XMvh60J1fZQoaAZoCWgPQwhhxD4BFFslwJSGlFKUaBVLMmgWR0CruwxVyWAxdX2UKGgGaAloD0MIZjOHpBbKE8CUhpRSlGgVSzJoFkdAq70soF3Y+XV9lChoBmgJaA9DCA3DR8SUmBnAlIaUUpRoFUsyaBZHQKu81a8Hv+h1fZQoaAZoCWgPQwixUkFF1Y8NwJSGlFKUaBVLMmgWR0CrvHXyy2QXdX2UKGgGaAloD0MIuD6sN2olCsCUhpRSlGgVSzJoFkdAq7wlW2gFo3V9lChoBmgJaA9DCKDDfHkBJhfAlIaUUpRoFUsyaBZHQKu+LyEL6UJ1fZQoaAZoCWgPQwgtB3qobYMOwJSGlFKUaBVLMmgWR0CrvdgQHzH0dX2UKGgGaAloD0MIlxx3SgfLDMCUhpRSlGgVSzJoFkdAq714dp7CznV9lChoBmgJaA9DCAtGJXUC6iPAlIaUUpRoFUsyaBZHQKu9J+YMOPN1fZQoaAZoCWgPQwiC5QgZyAMVwJSGlFKUaBVLMmgWR0CrvzbzkIX1dX2UKGgGaAloD0MIeCXJc32fB8CUhpRSlGgVSzJoFkdAq77f40uUU3V9lChoBmgJaA9DCI4CRMGMqRzAlIaUUpRoFUsyaBZHQKu+gBo24ut1fZQoaAZoCWgPQwioxeBh2hcEwJSGlFKUaBVLMmgWR0Crvi+FL39KdX2UKGgGaAloD0MIgPEMGvonEMCUhpRSlGgVSzJoFkdAq8BKFqSHM3V9lChoBmgJaA9DCKVrJt9s4xDAlIaUUpRoFUsyaBZHQKu/8wcHWz51fZQoaAZoCWgPQwi8s3bbheYgwJSGlFKUaBVLMmgWR0Crv5NKIznBdX2UKGgGaAloD0MIh/vIrUnXGMCUhpRSlGgVSzJoFkdAq79C1Z1V53V9lChoBmgJaA9DCCV1ApoICxHAlIaUUpRoFUsyaBZHQKvBZjSXt0F1fZQoaAZoCWgPQwil9bcE4P8JwJSGlFKUaBVLMmgWR0CrwQ/io86ndX2UKGgGaAloD0MINgNckC1LEsCUhpRSlGgVSzJoFkdAq8CwFotcwHV9lChoBmgJaA9DCMeDLXb7rAnAlIaUUpRoFUsyaBZHQKvAX41P3zt1fZQoaAZoCWgPQwhoeomxTD8fwJSGlFKUaBVLMmgWR0Crwnd8Rcu8dX2UKGgGaAloD0MIXfsCeuEeEMCUhpRSlGgVSzJoFkdAq8IghyKekHV9lChoBmgJaA9DCLvvGB77uQ3AlIaUUpRoFUsyaBZHQKvBwMLF4s51fZQoaAZoCWgPQwh/+zpwzggQwJSGlFKUaBVLMmgWR0CrwXBFNL13dX2UKGgGaAloD0MIIsSVs3fmCcCUhpRSlGgVSzJoFkdAq8OQZAIIGHV9lChoBmgJaA9DCARY5NcPcQbAlIaUUpRoFUsyaBZHQKvDOYEW69V1fZQoaAZoCWgPQwhlic4yi9ANwJSGlFKUaBVLMmgWR0CrwtnMdLg5dX2UKGgGaAloD0MIRzzZzYz+B8CUhpRSlGgVSzJoFkdAq8KJOerdWXV9lChoBmgJaA9DCDL/6Js0bQTAlIaUUpRoFUsyaBZHQKvEqNVBD5V1fZQoaAZoCWgPQwhHc2TllzESwJSGlFKUaBVLMmgWR0CrxFIJZ4fPdX2UKGgGaAloD0MIzhsnhXl/HMCUhpRSlGgVSzJoFkdAq8PyRfWtl3V9lChoBmgJaA9DCKfoSC7/AQ7AlIaUUpRoFUsyaBZHQKvDobT+ee51fZQoaAZoCWgPQwgzaykg7a8WwJSGlFKUaBVLMmgWR0CrxcRg7YChdX2UKGgGaAloD0MIO1YpPdObEsCUhpRSlGgVSzJoFkdAq8VtyeZof3V9lChoBmgJaA9DCCZuFcRA5xrAlIaUUpRoFUsyaBZHQKvFDoEjgQ91fZQoaAZoCWgPQwjxY8xdSzgRwJSGlFKUaBVLMmgWR0CrxL4o7V8UdX2UKGgGaAloD0MIPPiJA+h3GsCUhpRSlGgVSzJoFkdAq8bXIIWxhXV9lChoBmgJaA9DCJ/J/nkasA3AlIaUUpRoFUsyaBZHQKvGgIi1Rch1fZQoaAZoCWgPQwho5zQLtBsJwJSGlFKUaBVLMmgWR0CrxiDFyaNNdX2UKGgGaAloD0MIGa4OgLirEsCUhpRSlGgVSzJoFkdAq8XQM8YAKnV9lChoBmgJaA9DCIYEjC5vbhHAlIaUUpRoFUsyaBZHQKvH4RPoFFF1fZQoaAZoCWgPQwhZaVIKup0LwJSGlFKUaBVLMmgWR0Crx4oGyHEddX2UKGgGaAloD0MIjh8qjZh5GMCUhpRSlGgVSzJoFkdAq8cqqABkqnV9lChoBmgJaA9DCPzIrUm3VRXAlIaUUpRoFUsyaBZHQKvG2hGH58B1fZQoaAZoCWgPQwj2twTgn3IWwJSGlFKUaBVLMmgWR0CryO2tEG7jdX2UKGgGaAloD0MI3SObq+a5FsCUhpRSlGgVSzJoFkdAq8iWrdWQwXV9lChoBmgJaA9DCI3TEFX44xnAlIaUUpRoFUsyaBZHQKvINuZ1FH91fZQoaAZoCWgPQwiZRSi2gsYKwJSGlFKUaBVLMmgWR0Crx+bNr0rcdX2UKGgGaAloD0MIIcztXu6TC8CUhpRSlGgVSzJoFkdAq8n/gBLf13V9lChoBmgJaA9DCMb83NCU/QvAlIaUUpRoFUsyaBZHQKvJqHZbpvB1fZQoaAZoCWgPQwhKmj+mtWkPwJSGlFKUaBVLMmgWR0CryUkP+XJHdX2UKGgGaAloD0MIfZV87C7gEsCUhpRSlGgVSzJoFkdAq8j4jps41nV9lChoBmgJaA9DCBpSRfEqSxTAlIaUUpRoFUsyaBZHQKvLH3qRlpZ1fZQoaAZoCWgPQwgCvAUSFC8SwJSGlFKUaBVLMmgWR0Crysh7mdRSdX2UKGgGaAloD0MIKsk6HF2lDMCUhpRSlGgVSzJoFkdAq8porxy4nXV9lChoBmgJaA9DCG3mkNRCyQvAlIaUUpRoFUsyaBZHQKvKGCyyD7J1fZQoaAZoCWgPQwjPv132604OwJSGlFKUaBVLMmgWR0CrzC9vKlpHdX2UKGgGaAloD0MIzEI7p1kgF8CUhpRSlGgVSzJoFkdAq8vYWxhUi3V9lChoBmgJaA9DCJ93Y0FhsAjAlIaUUpRoFUsyaBZHQKvLeIacZtN1fZQoaAZoCWgPQwiuZp3xfbEUwJSGlFKUaBVLMmgWR0CryygDRtxddX2UKGgGaAloD0MIxuBh2jdXCMCUhpRSlGgVSzJoFkdAq805L7Gec3V9lChoBmgJaA9DCFFmg0wyUg/AlIaUUpRoFUsyaBZHQKvM4lF+d9V1fZQoaAZoCWgPQwgfhlYnZ5gRwJSGlFKUaBVLMmgWR0CrzIK1PWQPdX2UKGgGaAloD0MI1o9N8iMeCMCUhpRSlGgVSzJoFkdAq8wyG8EmpnV9lChoBmgJaA9DCGh6ibFMbxXAlIaUUpRoFUsyaBZHQKvOSHP/rB11fZQoaAZoCWgPQwgVcM/zpw0IwJSGlFKUaBVLMmgWR0CrzfHerMkhdX2UKGgGaAloD0MISl6dY0AWD8CUhpRSlGgVSzJoFkdAq82SIBRyfnV9lChoBmgJaA9DCAK6L2e2ixDAlIaUUpRoFUsyaBZHQKvNQaZQYUF1fZQoaAZoCWgPQwjWq8jogCQOwJSGlFKUaBVLMmgWR0Crz1AXl8w6dX2UKGgGaAloD0MI+KbpswMeEMCUhpRSlGgVSzJoFkdAq875CQcPv3V9lChoBmgJaA9DCHO5wVCHdRXAlIaUUpRoFUsyaBZHQKvOmS+xnnN1fZQoaAZoCWgPQwjIQnQIHHkTwJSGlFKUaBVLMmgWR0CrzkiYb83udX2UKGgGaAloD0MI2ClWDcKcCMCUhpRSlGgVSzJoFkdAq9Bop4KQaXV9lChoBmgJaA9DCA4TDVLw9BPAlIaUUpRoFUsyaBZHQKvQEb6xgRd1fZQoaAZoCWgPQwghj+BGynYOwJSGlFKUaBVLMmgWR0Crz7HwgDA8dX2UKGgGaAloD0MI8S4X8Z34B8CUhpRSlGgVSzJoFkdAq89hVsDW9XV9lChoBmgJaA9DCO/nFORngxXAlIaUUpRoFUsyaBZHQKvRZOJLuhN1fZQoaAZoCWgPQwgzpfW3BHAXwJSGlFKUaBVLMmgWR0Cr0Q3SKFZgdX2UKGgGaAloD0MICoZzDTM0EMCUhpRSlGgVSzJoFkdAq9Ct/8VHnXV9lChoBmgJaA9DCGcng6PkhRDAlIaUUpRoFUsyaBZHQKvQXZAY51h1fZQoaAZoCWgPQwjM8J9uoDAUwJSGlFKUaBVLMmgWR0Cr0nGBe5WjdX2UKGgGaAloD0MIg/xs5LpZFsCUhpRSlGgVSzJoFkdAq9Ia1PWQOnV9lChoBmgJaA9DCJd1/1iIThLAlIaUUpRoFUsyaBZHQKvRuw7DEWJ1fZQoaAZoCWgPQwj3yycrhgsRwJSGlFKUaBVLMmgWR0Cr0WqCHymRdX2UKGgGaAloD0MIlzrI68EkCsCUhpRSlGgVSzJoFkdAq9NqAYpDu3V9lChoBmgJaA9DCCLFAIkmkBbAlIaUUpRoFUsyaBZHQKvTEvJzT4N1fZQoaAZoCWgPQwiSWb3D7fAWwJSGlFKUaBVLMmgWR0Cr0rMUh3aBdX2UKGgGaAloD0MIQpdw6C0eEcCUhpRSlGgVSzJoFkdAq9Jie/YapHV9lChoBmgJaA9DCOs6VFOSNR/AlIaUUpRoFUsyaBZHQKvUd0+TvAp1fZQoaAZoCWgPQwjt72yP3qAWwJSGlFKUaBVLMmgWR0Cr1CBuGbkPdX2UKGgGaAloD0MIiZY8npZfEMCUhpRSlGgVSzJoFkdAq9PA7T2FnXV9lChoBmgJaA9DCPymsFJBxQbAlIaUUpRoFUsyaBZHQKvTcNUfgaZ1ZS4="
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
+
"_n_updates": 58200,
|
87 |
"n_steps": 5,
|
88 |
"gamma": 0.99,
|
89 |
"gae_lambda": 1.0,
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d12defda456714a656081a3e1f2071169a57cc9c7fc6b6ad9c13a347f63968c9
|
3 |
+
size 44606
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:010193a399f27a66b8849d6b0caf8c03ebc8f8ed24a4399b63752564b9ce296e
|
3 |
+
size 45886
|
a2c-PandaReachDense-v2/system_info.txt
CHANGED
@@ -2,6 +2,6 @@
|
|
2 |
- Python: 3.8.10
|
3 |
- Stable-Baselines3: 1.7.0
|
4 |
- PyTorch: 1.13.1+cu116
|
5 |
-
- GPU Enabled:
|
6 |
- Numpy: 1.21.6
|
7 |
- Gym: 0.21.0
|
|
|
2 |
- Python: 3.8.10
|
3 |
- Stable-Baselines3: 1.7.0
|
4 |
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: False
|
6 |
- Numpy: 1.21.6
|
7 |
- Gym: 0.21.0
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f5f4d86c8b0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5f4d862d50>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1500000, "_total_timesteps": 1500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674230639035845925, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAARNLrPqha9TuC4xQ/RNLrPqha9TuC4xQ/RNLrPqha9TuC4xQ/RNLrPqha9TuC4xQ/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAATwsTPTNohD9FFyg/PvAlPx0Ujr/EyLe9T4axvWsIX7/8dum+Mqu0vyIaKr6R5lw/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABE0us+qFr1O4LjFD8s9+w8gEldu1RHQzxE0us+qFr1O4LjFD8s9+w8gEldu1RHQzxE0us+qFr1O4LjFD8s9+w8gEldu1RHQzxE0us+qFr1O4LjFD8s9+w8gEldu1RHQzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.46058857 0.00748761 0.5815965 ]\n [0.46058857 0.00748761 0.5815965 ]\n [0.46058857 0.00748761 0.5815965 ]\n [0.46058857 0.00748761 0.5815965 ]]", "desired_goal": "[[ 0.03589946 1.0344299 0.65660506]\n [ 0.64819705 -1.1099888 -0.0897384 ]\n [-0.08668195 -0.8712222 -0.4559859 ]\n [-1.4114745 -0.16611531 0.86289316]]", "observation": "[[ 0.46058857 0.00748761 0.5815965 0.02892645 -0.00337657 0.01191886]\n [ 0.46058857 0.00748761 0.5815965 0.02892645 -0.00337657 0.01191886]\n [ 0.46058857 0.00748761 0.5815965 0.02892645 -0.00337657 0.01191886]\n [ 0.46058857 0.00748761 0.5815965 0.02892645 -0.00337657 0.01191886]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA41IZvSWZ/z0HAHE+qH8SvncQhT3IR1U+9l9Rvf/KEz4HIWU9HVGYu9V7Ez3Sivs9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.03743256 0.12480382 0.23535167]\n [-0.1430651 0.06497281 0.20828164]\n [-0.05111691 0.14432906 0.0559397 ]\n [-0.00464834 0.03600677 0.12282337]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI+wPltn0PB8CUhpRSlIwBbJRLMowBdJRHQLBW/nGbTc91fZQoaAZoCWgPQwiMnfASnNoDwJSGlFKUaBVLMmgWR0CwVt1+EytWdX2UKGgGaAloD0MInff/ccJkCcCUhpRSlGgVSzJoFkdAsFa9mHxjKHV9lChoBmgJaA9DCLKC34YYLwPAlIaUUpRoFUsyaBZHQLBWnkxASnN1fZQoaAZoCWgPQwi2LjVCPxP/v5SGlFKUaBVLMmgWR0CwV3bCzkZKdX2UKGgGaAloD0MI1EZ1OpAVCsCUhpRSlGgVSzJoFkdAsFdV1nuiOHV9lChoBmgJaA9DCMA9z5826gTAlIaUUpRoFUsyaBZHQLBXNeoUBXF1fZQoaAZoCWgPQwhC0qdV9Mf+v5SGlFKUaBVLMmgWR0CwVxaUNayKdX2UKGgGaAloD0MIUaIlj6eFBMCUhpRSlGgVSzJoFkdAsFfrFuNxVHV9lChoBmgJaA9DCJ4JTRJLCvy/lIaUUpRoFUsyaBZHQLBXyhn8Koh1fZQoaAZoCWgPQwgv+Z/83fv+v5SGlFKUaBVLMmgWR0CwV6pOWSlndX2UKGgGaAloD0MIPWTKh6Bq87+UhpRSlGgVSzJoFkdAsFeLFKkEcXV9lChoBmgJaA9DCBHjNa/qjAjAlIaUUpRoFUsyaBZHQLBYYMQEpy91fZQoaAZoCWgPQwgEx2Xc1GADwJSGlFKUaBVLMmgWR0CwWD/ci4axdX2UKGgGaAloD0MI1ejVAKWh9L+UhpRSlGgVSzJoFkdAsFgf9WIXTHV9lChoBmgJaA9DCPexgt+GOALAlIaUUpRoFUsyaBZHQLBYAK+SKWN1fZQoaAZoCWgPQwh0toDQepgNwJSGlFKUaBVLMmgWR0CwWNcNH6MzdX2UKGgGaAloD0MI3EqvzcYK9b+UhpRSlGgVSzJoFkdAsFi2By0a63V9lChoBmgJaA9DCLD+z2G+3ALAlIaUUpRoFUsyaBZHQLBYlhnJ1aJ1fZQoaAZoCWgPQwimKJfGL/wHwJSGlFKUaBVLMmgWR0CwWHbK7qY7dX2UKGgGaAloD0MIHLPsSWDTAcCUhpRSlGgVSzJoFkdAsFlRzV+ZxHV9lChoBmgJaA9DCF8M5US7yvW/lIaUUpRoFUsyaBZHQLBZMPIGQjl1fZQoaAZoCWgPQwh2cRsN4O0BwJSGlFKUaBVLMmgWR0CwWRENFz+4dX2UKGgGaAloD0MIz/Onjep0/b+UhpRSlGgVSzJoFkdAsFjx3+uNgnV9lChoBmgJaA9DCAAapUv/sgLAlIaUUpRoFUsyaBZHQLBZyOcDr7h1fZQoaAZoCWgPQwgRVI1eDRD8v5SGlFKUaBVLMmgWR0CwWafx+a0AdX2UKGgGaAloD0MIJCnpYWi1/b+UhpRSlGgVSzJoFkdAsFmIBJZntnV9lChoBmgJaA9DCFxxcVRuIv6/lIaUUpRoFUsyaBZHQLBZaPluFYd1fZQoaAZoCWgPQwgYIqev52v/v5SGlFKUaBVLMmgWR0CwWjrKJVKgdX2UKGgGaAloD0MIJUG4Agq1B8CUhpRSlGgVSzJoFkdAsFoZzCDVY3V9lChoBmgJaA9DCC++aI8X0hDAlIaUUpRoFUsyaBZHQLBZ+d5Y5kt1fZQoaAZoCWgPQwgZARWOIFX1v5SGlFKUaBVLMmgWR0CwWdrELpiadX2UKGgGaAloD0MIaoe/JmuU+r+UhpRSlGgVSzJoFkdAsFquwzLwF3V9lChoBmgJaA9DCERv8fCeA/i/lIaUUpRoFUsyaBZHQLBajesxO+J1fZQoaAZoCWgPQwj8GkmCcAUBwJSGlFKUaBVLMmgWR0CwWm4NNJvpdX2UKGgGaAloD0MIDqDf92++AsCUhpRSlGgVSzJoFkdAsFpOtga3qnV9lChoBmgJaA9DCBIykGeXL/+/lIaUUpRoFUsyaBZHQLBbJ+tbLU11fZQoaAZoCWgPQwhqiCr8GV75v5SGlFKUaBVLMmgWR0CwWwbxAjY7dX2UKGgGaAloD0MI6Iam7PTjCsCUhpRSlGgVSzJoFkdAsFrnCAMDwHV9lChoBmgJaA9DCOfgmdAk8f6/lIaUUpRoFUsyaBZHQLBax7laKUF1fZQoaAZoCWgPQwibVDTW/g75v5SGlFKUaBVLMmgWR0CwW5sQiA2AdX2UKGgGaAloD0MIhsjp6/na/b+UhpRSlGgVSzJoFkdAsFt6IAOrhnV9lChoBmgJaA9DCLQiaqLPRwXAlIaUUpRoFUsyaBZHQLBbWjriVB51fZQoaAZoCWgPQwhvnuqQm4EGwJSGlFKUaBVLMmgWR0CwWzsF+uvEdX2UKGgGaAloD0MItB6+TBSBBsCUhpRSlGgVSzJoFkdAsFwO2b5M13V9lChoBmgJaA9DCEZB8Pj2bvu/lIaUUpRoFUsyaBZHQLBb7dfLLZB1fZQoaAZoCWgPQwhmSYCaWvb4v5SGlFKUaBVLMmgWR0CwW83kkrwwdX2UKGgGaAloD0MIpz6QvHPo+L+UhpRSlGgVSzJoFkdAsFuu0ngHeXV9lChoBmgJaA9DCJQzFHe8Cf+/lIaUUpRoFUsyaBZHQLBchJiy6c11fZQoaAZoCWgPQwiUEoJV9bICwJSGlFKUaBVLMmgWR0CwXGPPw/gSdX2UKGgGaAloD0MIwF/MlqyK/L+UhpRSlGgVSzJoFkdAsFxD6uW8iHV9lChoBmgJaA9DCC43GOqwQgTAlIaUUpRoFUsyaBZHQLBcJJ/G2kV1fZQoaAZoCWgPQwi8BKc+kHz7v5SGlFKUaBVLMmgWR0CwXP2K/EfldX2UKGgGaAloD0MIZKw2/696AsCUhpRSlGgVSzJoFkdAsFzclXzUZ3V9lChoBmgJaA9DCB5OYDqtGwzAlIaUUpRoFUsyaBZHQLBcvK7ZnL91fZQoaAZoCWgPQwhIN8KiIo4EwJSGlFKUaBVLMmgWR0CwXJ1v2oNvdX2UKGgGaAloD0MIRkQxeQOMCsCUhpRSlGgVSzJoFkdAsF1v+m3vyHV9lChoBmgJaA9DCPPIHww8dwTAlIaUUpRoFUsyaBZHQLBdTvzOHFh1fZQoaAZoCWgPQwjuYMQ+AbQCwJSGlFKUaBVLMmgWR0CwXS8ZUDMedX2UKGgGaAloD0MIbhXEQNeeCMCUhpRSlGgVSzJoFkdAsF0P127nPnV9lChoBmgJaA9DCMK/CBozCQTAlIaUUpRoFUsyaBZHQLBd54mkWRB1fZQoaAZoCWgPQwg2BMdl3LQDwJSGlFKUaBVLMmgWR0CwXcaaXrt3dX2UKGgGaAloD0MIyF2EKcplBcCUhpRSlGgVSzJoFkdAsF2m34Kx93V9lChoBmgJaA9DCAdhbvdyzxLAlIaUUpRoFUsyaBZHQLBdh5NGmUJ1fZQoaAZoCWgPQwh5dvnWhxUKwJSGlFKUaBVLMmgWR0CwXmGG/N7jdX2UKGgGaAloD0MIHT7pRIKp/7+UhpRSlGgVSzJoFkdAsF5Aiml67nV9lChoBmgJaA9DCFhzgGCOvg7AlIaUUpRoFUsyaBZHQLBeIKc/dIp1fZQoaAZoCWgPQwh/wAMDCN8GwJSGlFKUaBVLMmgWR0CwXgFhXr+pdX2UKGgGaAloD0MIuwuUFFhQEcCUhpRSlGgVSzJoFkdAsF7WZH/cWXV9lChoBmgJaA9DCNNLjGX6BQ3AlIaUUpRoFUsyaBZHQLBetZPl+3J1fZQoaAZoCWgPQwgu/yH99lUIwJSGlFKUaBVLMmgWR0CwXpXUYsNEdX2UKGgGaAloD0MIY2NeRxxyDcCUhpRSlGgVSzJoFkdAsF52lFc6eXV9lChoBmgJaA9DCErOiT20DwnAlIaUUpRoFUsyaBZHQLBfUwljVhF1fZQoaAZoCWgPQwh40y07xL8BwJSGlFKUaBVLMmgWR0CwXzIQWepXdX2UKGgGaAloD0MIP/1nzY+/DMCUhpRSlGgVSzJoFkdAsF8SLehwl3V9lChoBmgJaA9DCAIoRpbMsQzAlIaUUpRoFUsyaBZHQLBe8t7KJVN1fZQoaAZoCWgPQwg+y/Pg7owMwJSGlFKUaBVLMmgWR0CwX8SRbKRudX2UKGgGaAloD0MIPSe9b3xtAsCUhpRSlGgVSzJoFkdAsF+jnTy8SXV9lChoBmgJaA9DCBt/orJhrQPAlIaUUpRoFUsyaBZHQLBfg8stkFx1fZQoaAZoCWgPQwg2yCQjZ6EIwJSGlFKUaBVLMmgWR0CwX2R7/n4gdX2UKGgGaAloD0MITkLpCyGnC8CUhpRSlGgVSzJoFkdAsGA7cUM5O3V9lChoBmgJaA9DCAd5PZgUfwbAlIaUUpRoFUsyaBZHQLBgGnKW9lF1fZQoaAZoCWgPQwjD81KxMc8QwJSGlFKUaBVLMmgWR0CwX/qRdQfqdX2UKGgGaAloD0MIY/Aw7Zv7E8CUhpRSlGgVSzJoFkdAsF/bSw4bTHV9lChoBmgJaA9DCCMUW0HTkgbAlIaUUpRoFUsyaBZHQLBgreAd4ml1fZQoaAZoCWgPQwgG9MKdC6MKwJSGlFKUaBVLMmgWR0CwYIz90ihWdX2UKGgGaAloD0MIpfPhWYIMBsCUhpRSlGgVSzJoFkdAsGBtEqlP8HV9lChoBmgJaA9DCE3Ar5Ek6AXAlIaUUpRoFUsyaBZHQLBgTb9ZRsN1fZQoaAZoCWgPQwjTvrm/ehwOwJSGlFKUaBVLMmgWR0CwYSTND+irdX2UKGgGaAloD0MI7UW0HVO3B8CUhpRSlGgVSzJoFkdAsGEDwqiGnHV9lChoBmgJaA9DCHmUSnhCjwzAlIaUUpRoFUsyaBZHQLBg5BqKxcF1fZQoaAZoCWgPQwhpHsAiv/4OwJSGlFKUaBVLMmgWR0CwYMTLB9CvdX2UKGgGaAloD0MI4EigwaYOBMCUhpRSlGgVSzJoFkdAsGGaxjawlnV9lChoBmgJaA9DCOhKBKp/0AnAlIaUUpRoFUsyaBZHQLBhec9W6sh1fZQoaAZoCWgPQwhEb/HwnsMKwJSGlFKUaBVLMmgWR0CwYVnrdFfBdX2UKGgGaAloD0MIZ+4h4Xt/CcCUhpRSlGgVSzJoFkdAsGE6mbb1y3V9lChoBmgJaA9DCDMbZJKREwbAlIaUUpRoFUsyaBZHQLBiEHfuTid1fZQoaAZoCWgPQwjDfk+sU8UHwJSGlFKUaBVLMmgWR0CwYe9/OMVDdX2UKGgGaAloD0MIFEIHXcIhBsCUhpRSlGgVSzJoFkdAsGHPoIOYpnV9lChoBmgJaA9DCCs0EMtmTgXAlIaUUpRoFUsyaBZHQLBhsFBY3eh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 75000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fb29adf03a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fb29adf10c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1164000, "_total_timesteps": 1164000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674287287137999001, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/RvAGjbi6x4WUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAezEUP98DXz0VUgs/ezEUP98DXz0VUgs/ezEUP98DXz0VUgs/ezEUP98DXz0VUgs/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAK2YXv7pTWT/9HiU/f8FeP7janT+nTbg/qV2wPxQtyD4GYMy/WEVzvyRsyb/FqgW/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAAB7MRQ/3wNfPRVSCz+Ci188ViytOmNgWzx7MRQ/3wNfPRVSCz+Ci188ViytOmNgWzx7MRQ/3wNfPRVSCz+Ci188ViytOmNgWzx7MRQ/3wNfPRVSCz+Ci188ViytOmNgWzyUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[0.57888 0.05444705 0.5442212 ]\n [0.57888 0.05444705 0.5442212 ]\n [0.57888 0.05444705 0.5442212 ]\n [0.57888 0.05444705 0.5442212 ]]", "desired_goal": "[[-0.5914027 0.8489338 0.6450041 ]\n [ 0.87014 1.2332373 1.4398698 ]\n [ 1.3778583 0.39096892 -1.5966804 ]\n [-0.95027685 -1.5736127 -0.522137 ]]", "observation": "[[0.57888 0.05444705 0.5442212 0.0136441 0.00132121 0.01338968]\n [0.57888 0.05444705 0.5442212 0.0136441 0.00132121 0.01338968]\n [0.57888 0.05444705 0.5442212 0.0136441 0.00132121 0.01338968]\n [0.57888 0.05444705 0.5442212 0.0136441 0.00132121 0.01338968]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA0OPXPbl5GD5yIAg+gN7bvf2IIb1EkBE+EKkSvhMfI73IbZk++sXpvewoPj3s1UE+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.10541499 0.14890184 0.13293627]\n [-0.10735798 -0.03943728 0.14215189]\n [-0.14322305 -0.03982456 0.2996657 ]\n [-0.11414714 0.04642574 0.18929261]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBOPg0jHnFsCUhpRSlIwBbJRLMowBdJRHQKu7Ce4kNWl1fZQoaAZoCWgPQwiBsb6ByU0NwJSGlFKUaBVLMmgWR0CrurNPHktFdX2UKGgGaAloD0MIJ9h/nZu2DsCUhpRSlGgVSzJoFkdAq7pTn7pFC3V9lChoBmgJaA9DCAVvSKMCdxLAlIaUUpRoFUsyaBZHQKu6AxPfsNV1fZQoaAZoCWgPQwjXpNsSuUAUwJSGlFKUaBVLMmgWR0CrvBI1UEPldX2UKGgGaAloD0MIPITx07hnHMCUhpRSlGgVSzJoFkdAq7u792ovSXV9lChoBmgJaA9DCFn8prBSYQnAlIaUUpRoFUsyaBZHQKu7XMvh60J1fZQoaAZoCWgPQwhhxD4BFFslwJSGlFKUaBVLMmgWR0CruwxVyWAxdX2UKGgGaAloD0MIZjOHpBbKE8CUhpRSlGgVSzJoFkdAq70soF3Y+XV9lChoBmgJaA9DCA3DR8SUmBnAlIaUUpRoFUsyaBZHQKu81a8Hv+h1fZQoaAZoCWgPQwixUkFF1Y8NwJSGlFKUaBVLMmgWR0CrvHXyy2QXdX2UKGgGaAloD0MIuD6sN2olCsCUhpRSlGgVSzJoFkdAq7wlW2gFo3V9lChoBmgJaA9DCKDDfHkBJhfAlIaUUpRoFUsyaBZHQKu+LyEL6UJ1fZQoaAZoCWgPQwgtB3qobYMOwJSGlFKUaBVLMmgWR0CrvdgQHzH0dX2UKGgGaAloD0MIlxx3SgfLDMCUhpRSlGgVSzJoFkdAq714dp7CznV9lChoBmgJaA9DCAtGJXUC6iPAlIaUUpRoFUsyaBZHQKu9J+YMOPN1fZQoaAZoCWgPQwiC5QgZyAMVwJSGlFKUaBVLMmgWR0CrvzbzkIX1dX2UKGgGaAloD0MIeCXJc32fB8CUhpRSlGgVSzJoFkdAq77f40uUU3V9lChoBmgJaA9DCI4CRMGMqRzAlIaUUpRoFUsyaBZHQKu+gBo24ut1fZQoaAZoCWgPQwioxeBh2hcEwJSGlFKUaBVLMmgWR0Crvi+FL39KdX2UKGgGaAloD0MIgPEMGvonEMCUhpRSlGgVSzJoFkdAq8BKFqSHM3V9lChoBmgJaA9DCKVrJt9s4xDAlIaUUpRoFUsyaBZHQKu/8wcHWz51fZQoaAZoCWgPQwi8s3bbheYgwJSGlFKUaBVLMmgWR0Crv5NKIznBdX2UKGgGaAloD0MIh/vIrUnXGMCUhpRSlGgVSzJoFkdAq79C1Z1V53V9lChoBmgJaA9DCCV1ApoICxHAlIaUUpRoFUsyaBZHQKvBZjSXt0F1fZQoaAZoCWgPQwil9bcE4P8JwJSGlFKUaBVLMmgWR0CrwQ/io86ndX2UKGgGaAloD0MINgNckC1LEsCUhpRSlGgVSzJoFkdAq8CwFotcwHV9lChoBmgJaA9DCMeDLXb7rAnAlIaUUpRoFUsyaBZHQKvAX41P3zt1fZQoaAZoCWgPQwhoeomxTD8fwJSGlFKUaBVLMmgWR0Crwnd8Rcu8dX2UKGgGaAloD0MIXfsCeuEeEMCUhpRSlGgVSzJoFkdAq8IghyKekHV9lChoBmgJaA9DCLvvGB77uQ3AlIaUUpRoFUsyaBZHQKvBwMLF4s51fZQoaAZoCWgPQwh/+zpwzggQwJSGlFKUaBVLMmgWR0CrwXBFNL13dX2UKGgGaAloD0MIIsSVs3fmCcCUhpRSlGgVSzJoFkdAq8OQZAIIGHV9lChoBmgJaA9DCARY5NcPcQbAlIaUUpRoFUsyaBZHQKvDOYEW69V1fZQoaAZoCWgPQwhlic4yi9ANwJSGlFKUaBVLMmgWR0CrwtnMdLg5dX2UKGgGaAloD0MIRzzZzYz+B8CUhpRSlGgVSzJoFkdAq8KJOerdWXV9lChoBmgJaA9DCDL/6Js0bQTAlIaUUpRoFUsyaBZHQKvEqNVBD5V1fZQoaAZoCWgPQwhHc2TllzESwJSGlFKUaBVLMmgWR0CrxFIJZ4fPdX2UKGgGaAloD0MIzhsnhXl/HMCUhpRSlGgVSzJoFkdAq8PyRfWtl3V9lChoBmgJaA9DCKfoSC7/AQ7AlIaUUpRoFUsyaBZHQKvDobT+ee51fZQoaAZoCWgPQwgzaykg7a8WwJSGlFKUaBVLMmgWR0CrxcRg7YChdX2UKGgGaAloD0MIO1YpPdObEsCUhpRSlGgVSzJoFkdAq8VtyeZof3V9lChoBmgJaA9DCCZuFcRA5xrAlIaUUpRoFUsyaBZHQKvFDoEjgQ91fZQoaAZoCWgPQwjxY8xdSzgRwJSGlFKUaBVLMmgWR0CrxL4o7V8UdX2UKGgGaAloD0MIPPiJA+h3GsCUhpRSlGgVSzJoFkdAq8bXIIWxhXV9lChoBmgJaA9DCJ/J/nkasA3AlIaUUpRoFUsyaBZHQKvGgIi1Rch1fZQoaAZoCWgPQwho5zQLtBsJwJSGlFKUaBVLMmgWR0CrxiDFyaNNdX2UKGgGaAloD0MIGa4OgLirEsCUhpRSlGgVSzJoFkdAq8XQM8YAKnV9lChoBmgJaA9DCIYEjC5vbhHAlIaUUpRoFUsyaBZHQKvH4RPoFFF1fZQoaAZoCWgPQwhZaVIKup0LwJSGlFKUaBVLMmgWR0Crx4oGyHEddX2UKGgGaAloD0MIjh8qjZh5GMCUhpRSlGgVSzJoFkdAq8cqqABkqnV9lChoBmgJaA9DCPzIrUm3VRXAlIaUUpRoFUsyaBZHQKvG2hGH58B1fZQoaAZoCWgPQwj2twTgn3IWwJSGlFKUaBVLMmgWR0CryO2tEG7jdX2UKGgGaAloD0MI3SObq+a5FsCUhpRSlGgVSzJoFkdAq8iWrdWQwXV9lChoBmgJaA9DCI3TEFX44xnAlIaUUpRoFUsyaBZHQKvINuZ1FH91fZQoaAZoCWgPQwiZRSi2gsYKwJSGlFKUaBVLMmgWR0Crx+bNr0rcdX2UKGgGaAloD0MIIcztXu6TC8CUhpRSlGgVSzJoFkdAq8n/gBLf13V9lChoBmgJaA9DCMb83NCU/QvAlIaUUpRoFUsyaBZHQKvJqHZbpvB1fZQoaAZoCWgPQwhKmj+mtWkPwJSGlFKUaBVLMmgWR0CryUkP+XJHdX2UKGgGaAloD0MIfZV87C7gEsCUhpRSlGgVSzJoFkdAq8j4jps41nV9lChoBmgJaA9DCBpSRfEqSxTAlIaUUpRoFUsyaBZHQKvLH3qRlpZ1fZQoaAZoCWgPQwgCvAUSFC8SwJSGlFKUaBVLMmgWR0Crysh7mdRSdX2UKGgGaAloD0MIKsk6HF2lDMCUhpRSlGgVSzJoFkdAq8porxy4nXV9lChoBmgJaA9DCG3mkNRCyQvAlIaUUpRoFUsyaBZHQKvKGCyyD7J1fZQoaAZoCWgPQwjPv132604OwJSGlFKUaBVLMmgWR0CrzC9vKlpHdX2UKGgGaAloD0MIzEI7p1kgF8CUhpRSlGgVSzJoFkdAq8vYWxhUi3V9lChoBmgJaA9DCJ93Y0FhsAjAlIaUUpRoFUsyaBZHQKvLeIacZtN1fZQoaAZoCWgPQwiuZp3xfbEUwJSGlFKUaBVLMmgWR0CryygDRtxddX2UKGgGaAloD0MIxuBh2jdXCMCUhpRSlGgVSzJoFkdAq805L7Gec3V9lChoBmgJaA9DCFFmg0wyUg/AlIaUUpRoFUsyaBZHQKvM4lF+d9V1fZQoaAZoCWgPQwgfhlYnZ5gRwJSGlFKUaBVLMmgWR0CrzIK1PWQPdX2UKGgGaAloD0MI1o9N8iMeCMCUhpRSlGgVSzJoFkdAq8wyG8EmpnV9lChoBmgJaA9DCGh6ibFMbxXAlIaUUpRoFUsyaBZHQKvOSHP/rB11fZQoaAZoCWgPQwgVcM/zpw0IwJSGlFKUaBVLMmgWR0CrzfHerMkhdX2UKGgGaAloD0MISl6dY0AWD8CUhpRSlGgVSzJoFkdAq82SIBRyfnV9lChoBmgJaA9DCAK6L2e2ixDAlIaUUpRoFUsyaBZHQKvNQaZQYUF1fZQoaAZoCWgPQwjWq8jogCQOwJSGlFKUaBVLMmgWR0Crz1AXl8w6dX2UKGgGaAloD0MI+KbpswMeEMCUhpRSlGgVSzJoFkdAq875CQcPv3V9lChoBmgJaA9DCHO5wVCHdRXAlIaUUpRoFUsyaBZHQKvOmS+xnnN1fZQoaAZoCWgPQwjIQnQIHHkTwJSGlFKUaBVLMmgWR0CrzkiYb83udX2UKGgGaAloD0MI2ClWDcKcCMCUhpRSlGgVSzJoFkdAq9Bop4KQaXV9lChoBmgJaA9DCA4TDVLw9BPAlIaUUpRoFUsyaBZHQKvQEb6xgRd1fZQoaAZoCWgPQwghj+BGynYOwJSGlFKUaBVLMmgWR0Crz7HwgDA8dX2UKGgGaAloD0MI8S4X8Z34B8CUhpRSlGgVSzJoFkdAq89hVsDW9XV9lChoBmgJaA9DCO/nFORngxXAlIaUUpRoFUsyaBZHQKvRZOJLuhN1fZQoaAZoCWgPQwgzpfW3BHAXwJSGlFKUaBVLMmgWR0Cr0Q3SKFZgdX2UKGgGaAloD0MICoZzDTM0EMCUhpRSlGgVSzJoFkdAq9Ct/8VHnXV9lChoBmgJaA9DCGcng6PkhRDAlIaUUpRoFUsyaBZHQKvQXZAY51h1fZQoaAZoCWgPQwjM8J9uoDAUwJSGlFKUaBVLMmgWR0Cr0nGBe5WjdX2UKGgGaAloD0MIg/xs5LpZFsCUhpRSlGgVSzJoFkdAq9Ia1PWQOnV9lChoBmgJaA9DCJd1/1iIThLAlIaUUpRoFUsyaBZHQKvRuw7DEWJ1fZQoaAZoCWgPQwj3yycrhgsRwJSGlFKUaBVLMmgWR0Cr0WqCHymRdX2UKGgGaAloD0MIlzrI68EkCsCUhpRSlGgVSzJoFkdAq9NqAYpDu3V9lChoBmgJaA9DCCLFAIkmkBbAlIaUUpRoFUsyaBZHQKvTEvJzT4N1fZQoaAZoCWgPQwiSWb3D7fAWwJSGlFKUaBVLMmgWR0Cr0rMUh3aBdX2UKGgGaAloD0MIQpdw6C0eEcCUhpRSlGgVSzJoFkdAq9Jie/YapHV9lChoBmgJaA9DCOs6VFOSNR/AlIaUUpRoFUsyaBZHQKvUd0+TvAp1fZQoaAZoCWgPQwjt72yP3qAWwJSGlFKUaBVLMmgWR0Cr1CBuGbkPdX2UKGgGaAloD0MIiZY8npZfEMCUhpRSlGgVSzJoFkdAq9PA7T2FnXV9lChoBmgJaA9DCPymsFJBxQbAlIaUUpRoFUsyaBZHQKvTcNUfgaZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 58200, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -4.334904420003295, "std_reward": 0.9401279580834607, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-21T08:47:40.123112"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3056
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0a90fd59fe9ff820930c2991e033a9d39b41715c15f4bbdfb8c15871aae4a2a2
|
3 |
size 3056
|