kyeongpil commited on
Commit
d0bcdaa
1 Parent(s): ffc6b0c

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 264.03 +/- 19.49
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0282106700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0282106790>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0282106820>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f02821068b0>", "_build": "<function ActorCriticPolicy._build at 0x7f0282106940>", "forward": "<function ActorCriticPolicy.forward at 0x7f02821069d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0282106a60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0282106af0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f0282106b80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0282106c10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0282106ca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0282106d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f0282100870>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673834423565087267, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAPWXj75pDkM/uw+hPcNCiL78ySm+agQGPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUb6ghcRNckCUhpRSlIwBbJRNMgGMAXSUR0CfSvg4wRGudX2UKGgGaAloD0MIoUeMnlswU0CUhpRSlGgVS8doFkdAn0wVO9FnZnV9lChoBmgJaA9DCBwIyQImVk5AlIaUUpRoFUvTaBZHQJ9NRQfp2U11fZQoaAZoCWgPQwg5Yi0+xa1wQJSGlFKUaBVNCwFoFkdAn1AoJNTLn3V9lChoBmgJaA9DCAA2IEJcWS9AlIaUUpRoFUvFaBZHQJ9RS1og3cZ1fZQoaAZoCWgPQwjnilJCcNVwQJSGlFKUaBVNUwFoFkdAn1NpRbbDdnV9lChoBmgJaA9DCCs0EMtmaEpAlIaUUpRoFUvhaBZHQJ9UtcmjTKF1fZQoaAZoCWgPQwiefeVBOuFwQJSGlFKUaBVNUQFoFkdAn1gEGRmseXV9lChoBmgJaA9DCFTle0Yi2W1AlIaUUpRoFU0iAWgWR0CfWc2IwdsBdX2UKGgGaAloD0MIev8fJwxxcUCUhpRSlGgVTR0BaBZHQJ9bcG/vfCR1fZQoaAZoCWgPQwi5quy7IggrwJSGlFKUaBVLuWgWR0CfXa9rXUYsdX2UKGgGaAloD0MIDJOpgtFbb0CUhpRSlGgVTVoBaBZHQJ9f6OsDGLl1fZQoaAZoCWgPQwh00CUcOtJwQJSGlFKUaBVNOAFoFkdAn2HH1J17pnV9lChoBmgJaA9DCEqzeRxGi3JAlIaUUpRoFU0vAWgWR0CfY3JU5uIidX2UKGgGaAloD0MIZ0Y/Gs6/b0CUhpRSlGgVTUABaBZHQJ9mjux8lX11fZQoaAZoCWgPQwj/z2G+PJ9vQJSGlFKUaBVNIAFoFkdAn2heS4e9z3V9lChoBmgJaA9DCAg6WtWSJXFAlIaUUpRoFU01AWgWR0CfajntfG+9dX2UKGgGaAloD0MIeZJ0zSSZcECUhpRSlGgVTUkBaBZHQJ9tbZM+NcZ1fZQoaAZoCWgPQwgxRE5fT2VwQJSGlFKUaBVNMwFoFkdAn284bS7XhHV9lChoBmgJaA9DCAqBXOLIyG5AlIaUUpRoFU1FAWgWR0CfcQ/TspocdX2UKGgGaAloD0MIIbHdPcB0b0CUhpRSlGgVTSkBaBZHQJ90DFxXGOx1fZQoaAZoCWgPQwiN74tLlS1wQJSGlFKUaBVNIwFoFkdAn3XCb6P8ynV9lChoBmgJaA9DCF5KXTIO1G9AlIaUUpRoFU0ZAWgWR0Cfd2kc0cfedX2UKGgGaAloD0MIIVwBhXqxU0CUhpRSlGgVTegDaBZHQJ+ACZw4sEt1fZQoaAZoCWgPQwg0n3O362tsQJSGlFKUaBVNOgFoFkdAn4IFefI0ZXV9lChoBmgJaA9DCK2JBb5iW3FAlIaUUpRoFU07AWgWR0CfhUtI065odX2UKGgGaAloD0MIyol2FVI6ckCUhpRSlGgVTVkBaBZHQJ+HVtZV4ot1fZQoaAZoCWgPQwhYq3ZNyIFvQJSGlFKUaBVNHgFoFkdAn4j5E6T4cnV9lChoBmgJaA9DCPsGJjcKBHFAlIaUUpRoFU0wAWgWR0CfjA12aDwpdX2UKGgGaAloD0MIpWjlXmDwbkCUhpRSlGgVTRwBaBZHQJ+NyIFeOXF1fZQoaAZoCWgPQwj8/zhhAvNwQJSGlFKUaBVNYQFoFkdAn4/aMm4RVnV9lChoBmgJaA9DCCdMGM2KsHBAlIaUUpRoFU0gAWgWR0CfktZm7J4jdX2UKGgGaAloD0MIyCWOPJCbb0CUhpRSlGgVTWgBaBZHQJ+VBLL6k691fZQoaAZoCWgPQwhFgqlmlhtwQJSGlFKUaBVNJwFoFkdAn5boiLVFyHV9lChoBmgJaA9DCDUqcLJNBXBAlIaUUpRoFU0fAWgWR0CfmKeGfwqidX2UKGgGaAloD0MIYCFzZdBqcECUhpRSlGgVTSYBaBZHQJ+brRzBAOd1fZQoaAZoCWgPQwjUDKmieIJtQJSGlFKUaBVNJAFoFkdAn51k690zTHV9lChoBmgJaA9DCFw8vOcAxnBAlIaUUpRoFU1YAWgWR0Cfn4Q1rIo3dX2UKGgGaAloD0MIa/P/qqMockCUhpRSlGgVTVsBaBZHQJ+jELux8lZ1fZQoaAZoCWgPQwhYxoZudvhuQJSGlFKUaBVNJgFoFkdAn6Tw7YChe3V9lChoBmgJaA9DCAa5izDFqnFAlIaUUpRoFU0WAWgWR0CfpqT9sJpndX2UKGgGaAloD0MIqtbCLLTYcECUhpRSlGgVTUwBaBZHQJ+p40BOpKl1fZQoaAZoCWgPQwjQYFPnUaJwQJSGlFKUaBVNSgFoFkdAn6vb+xW1dHV9lChoBmgJaA9DCOSG302321hAlIaUUpRoFU3oA2gWR0CftJcCYCyRdX2UKGgGaAloD0MII4JxcCl1cUCUhpRSlGgVTTgBaBZHQJ+2asCDEm91fZQoaAZoCWgPQwiFlJ9Ue9RsQJSGlFKUaBVNIQFoFkdAn7g8zl90BHV9lChoBmgJaA9DCIxJfy+FzHFAlIaUUpRoFU07AWgWR0Cfu146wMYudX2UKGgGaAloD0MINV66SQycckCUhpRSlGgVTRoBaBZHQJ+9BPxhDw91fZQoaAZoCWgPQwgVViqoqDRwQJSGlFKUaBVNIAFoFkdAn76+FHrhSHV9lChoBmgJaA9DCEJ6ihxipnBAlIaUUpRoFU0kAWgWR0CfwaV/+bVjdX2UKGgGaAloD0MIW9B7Y4gAbUCUhpRSlGgVTRUBaBZHQJ/DS36Q/5d1fZQoaAZoCWgPQwhlVBnGXUZxQJSGlFKUaBVNPAFoFkdAn8UqP0Zm7XV9lChoBmgJaA9DCMWqQZhbPWtAlIaUUpRoFU00AWgWR0CfyF5lOGj9dX2UKGgGaAloD0MIU+v9RrtvcUCUhpRSlGgVTUkBaBZHQJ/KX/DLr5Z1fZQoaAZoCWgPQwhf7pOjgLBxQJSGlFKUaBVNOwFoFkdAn8xq814xDnV9lChoBmgJaA9DCGqlEMgluXFAlIaUUpRoFU1aAWgWR0Cfzm/9pAUtdX2UKGgGaAloD0MIDfrS29/ccECUhpRSlGgVTSoBaBZHQJ/RdRjz7Mx1fZQoaAZoCWgPQwhHyECeXSVgQJSGlFKUaBVN6ANoFkdAn9tlN5+pfnV9lChoBmgJaA9DCJz9gXLbWnBAlIaUUpRoFU06AWgWR0Cf3UDEWIoFdX2UKGgGaAloD0MI3C401+l+cECUhpRSlGgVTTQBaBZHQJ/fKuX/o7p1fZQoaAZoCWgPQwgurYbEPU5rQJSGlFKUaBVNNgFoFkdAn+I/nKW9lHV9lChoBmgJaA9DCMLexJCcxWtAlIaUUpRoFU0eAWgWR0Cf4/Lmp2lmdX2UKGgGaAloD0MIP47myEqKckCUhpRSlGgVTQQBaBZHQJ/lZ8gIQe51fZQoaAZoCWgPQwho6nWLQEVyQJSGlFKUaBVNPgFoFkdAn+iquOjqOnV9lChoBmgJaA9DCFu21heJuG9AlIaUUpRoFU0yAWgWR0Cf6noiLVFydX2UKGgGaAloD0MI7PoFu6E3cECUhpRSlGgVTTsBaBZHQJ/sbch1Tzd1fZQoaAZoCWgPQwiXGqGfaSxwQJSGlFKUaBVNFAFoFkdAn+4kjcEeQ3V9lChoBmgJaA9DCMql8QsvM3JAlIaUUpRoFU1wAWgWR0Cf8eaZhKDkdX2UKGgGaAloD0MIhbLw9fWVckCUhpRSlGgVTWsBaBZHQJ/0Q6fapP11fZQoaAZoCWgPQwjOb5hoEEhwQJSGlFKUaBVNBQFoFkdAn/XYx59mYnV9lChoBmgJaA9DCC2Xjc75JHBAlIaUUpRoFU02AWgWR0Cf+PInjQzDdX2UKGgGaAloD0MIDAbX3NEdRkCUhpRSlGgVS/xoFkdAn/pZy+6AfHV9lChoBmgJaA9DCKNcGr9w+G1AlIaUUpRoFU0wAWgWR0Cf/D0HyEtedX2UKGgGaAloD0MINpIE4UrYcUCUhpRSlGgVTSgBaBZHQJ/+BmGucMF1fZQoaAZoCWgPQwixMa8jDuBtQJSGlFKUaBVNKQFoFkdAoACNyDIzWXV9lChoBmgJaA9DCPm7d9QYdnFAlIaUUpRoFU0aAWgWR0CgAVzkyULVdX2UKGgGaAloD0MIECVa8riqcECUhpRSlGgVTQMBaBZHQKACLlT3qRl1fZQoaAZoCWgPQwhkk/yIH7pwQJSGlFKUaBVNQwFoFkdAoAPCxzJZGXV9lChoBmgJaA9DCHhBRGpaQnFAlIaUUpRoFU0KAWgWR0CgBI9cry2AdX2UKGgGaAloD0MIGAXB41vbbECUhpRSlGgVTRgBaBZHQKAFYj3VTaV1fZQoaAZoCWgPQwiOBBpsas5vQJSGlFKUaBVNPQFoFkdAoAZsFQl8gXV9lChoBmgJaA9DCE5C6Qshz29AlIaUUpRoFU0aAWgWR0CgB9/oA4n4dX2UKGgGaAloD0MIFCS2u4c2Y0CUhpRSlGgVTegDaBZHQKAMIzUqhDh1fZQoaAZoCWgPQwgLmSuDamhvQJSGlFKUaBVNSAFoFkdAoA0cH0K7ZnV9lChoBmgJaA9DCJ2cobijA3NAlIaUUpRoFU0uAWgWR0CgDfx5LRKIdX2UKGgGaAloD0MIHxK+97dWY0CUhpRSlGgVTegDaBZHQKASPvSc9W91fZQoaAZoCWgPQwhpNo/DYGpwQJSGlFKUaBVNGwFoFkdAoBOpEfDDTHV9lChoBmgJaA9DCGRYxRsZrWxAlIaUUpRoFU0lAWgWR0CgFI37+DODdX2UKGgGaAloD0MI5QzFHW/3cECUhpRSlGgVTT8BaBZHQKAViMAFPi11fZQoaAZoCWgPQwjspL4srWZxQJSGlFKUaBVNEgFoFkdAoBZbeoDPnnV9lChoBmgJaA9DCKRyE7U0/HBAlIaUUpRoFU0/AWgWR0CgF/F0o0AMdX2UKGgGaAloD0MIR+NQv4uEcECUhpRSlGgVTT4BaBZHQKAY9CoCMgl1fZQoaAZoCWgPQwiHGoUks8RvQJSGlFKUaBVNCgFoFkdAoBnBCQcPv3V9lChoBmgJaA9DCBISaRu/t3BAlIaUUpRoFU0cAWgWR0CgG7EjX4CZdX2UKGgGaAloD0MIqwmi7kOocUCUhpRSlGgVTTUBaBZHQKAc83R5TqB1fZQoaAZoCWgPQwid9L7xtZVxQJSGlFKUaBVNYAFoFkdAoB5snJDE33V9lChoBmgJaA9DCE6c3O9Q3XFAlIaUUpRoFU0lAWgWR0CgIJh3JPqLdX2UKGgGaAloD0MIm64nui5ecECUhpRSlGgVTS0BaBZHQKAh5XMhX8x1fZQoaAZoCWgPQwjP91PjJQ1wQJSGlFKUaBVNLgFoFkdAoCLrDAJswnV9lChoBmgJaA9DCNdOlITEenJAlIaUUpRoFU0aAWgWR0CgI8YAS39adWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:76f4796552a81aeb64fe25a6791b43f9d6fcc74e5d194b4cf33c577318be895c
3
+ size 146758
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,95 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f0282106700>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f0282106790>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f0282106820>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f02821068b0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f0282106940>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f02821069d0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f0282106a60>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f0282106af0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f0282106b80>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f0282106c10>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f0282106ca0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f0282106d30>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f0282100870>"
21
+ },
22
+ "verbose": 0,
23
+ "policy_kwargs": {},
24
+ "observation_space": {
25
+ ":type:": "<class 'gym.spaces.box.Box'>",
26
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
27
+ "dtype": "float32",
28
+ "_shape": [
29
+ 8
30
+ ],
31
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
32
+ "high": "[inf inf inf inf inf inf inf inf]",
33
+ "bounded_below": "[False False False False False False False False]",
34
+ "bounded_above": "[False False False False False False False False]",
35
+ "_np_random": null
36
+ },
37
+ "action_space": {
38
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
39
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
40
+ "n": 4,
41
+ "_shape": [],
42
+ "dtype": "int64",
43
+ "_np_random": null
44
+ },
45
+ "n_envs": 1,
46
+ "num_timesteps": 1000448,
47
+ "_total_timesteps": 1000000,
48
+ "_num_timesteps_at_start": 0,
49
+ "seed": null,
50
+ "action_noise": null,
51
+ "start_time": 1673834423565087267,
52
+ "learning_rate": 0.0003,
53
+ "tensorboard_log": null,
54
+ "lr_schedule": {
55
+ ":type:": "<class 'function'>",
56
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
57
+ },
58
+ "_last_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAPWXj75pDkM/uw+hPcNCiL78ySm+agQGPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_last_episode_starts": {
63
+ ":type:": "<class 'numpy.ndarray'>",
64
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
65
+ },
66
+ "_last_original_obs": null,
67
+ "_episode_num": 0,
68
+ "use_sde": false,
69
+ "sde_sample_freq": -1,
70
+ "_current_progress_remaining": -0.00044800000000000395,
71
+ "ep_info_buffer": {
72
+ ":type:": "<class 'collections.deque'>",
73
+ ":serialized:": "gAWVexAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIUb6ghcRNckCUhpRSlIwBbJRNMgGMAXSUR0CfSvg4wRGudX2UKGgGaAloD0MIoUeMnlswU0CUhpRSlGgVS8doFkdAn0wVO9FnZnV9lChoBmgJaA9DCBwIyQImVk5AlIaUUpRoFUvTaBZHQJ9NRQfp2U11fZQoaAZoCWgPQwg5Yi0+xa1wQJSGlFKUaBVNCwFoFkdAn1AoJNTLn3V9lChoBmgJaA9DCAA2IEJcWS9AlIaUUpRoFUvFaBZHQJ9RS1og3cZ1fZQoaAZoCWgPQwjnilJCcNVwQJSGlFKUaBVNUwFoFkdAn1NpRbbDdnV9lChoBmgJaA9DCCs0EMtmaEpAlIaUUpRoFUvhaBZHQJ9UtcmjTKF1fZQoaAZoCWgPQwiefeVBOuFwQJSGlFKUaBVNUQFoFkdAn1gEGRmseXV9lChoBmgJaA9DCFTle0Yi2W1AlIaUUpRoFU0iAWgWR0CfWc2IwdsBdX2UKGgGaAloD0MIev8fJwxxcUCUhpRSlGgVTR0BaBZHQJ9bcG/vfCR1fZQoaAZoCWgPQwi5quy7IggrwJSGlFKUaBVLuWgWR0CfXa9rXUYsdX2UKGgGaAloD0MIDJOpgtFbb0CUhpRSlGgVTVoBaBZHQJ9f6OsDGLl1fZQoaAZoCWgPQwh00CUcOtJwQJSGlFKUaBVNOAFoFkdAn2HH1J17pnV9lChoBmgJaA9DCEqzeRxGi3JAlIaUUpRoFU0vAWgWR0CfY3JU5uIidX2UKGgGaAloD0MIZ0Y/Gs6/b0CUhpRSlGgVTUABaBZHQJ9mjux8lX11fZQoaAZoCWgPQwj/z2G+PJ9vQJSGlFKUaBVNIAFoFkdAn2heS4e9z3V9lChoBmgJaA9DCAg6WtWSJXFAlIaUUpRoFU01AWgWR0CfajntfG+9dX2UKGgGaAloD0MIeZJ0zSSZcECUhpRSlGgVTUkBaBZHQJ9tbZM+NcZ1fZQoaAZoCWgPQwgxRE5fT2VwQJSGlFKUaBVNMwFoFkdAn284bS7XhHV9lChoBmgJaA9DCAqBXOLIyG5AlIaUUpRoFU1FAWgWR0CfcQ/TspocdX2UKGgGaAloD0MIIbHdPcB0b0CUhpRSlGgVTSkBaBZHQJ90DFxXGOx1fZQoaAZoCWgPQwiN74tLlS1wQJSGlFKUaBVNIwFoFkdAn3XCb6P8ynV9lChoBmgJaA9DCF5KXTIO1G9AlIaUUpRoFU0ZAWgWR0Cfd2kc0cfedX2UKGgGaAloD0MIIVwBhXqxU0CUhpRSlGgVTegDaBZHQJ+ACZw4sEt1fZQoaAZoCWgPQwg0n3O362tsQJSGlFKUaBVNOgFoFkdAn4IFefI0ZXV9lChoBmgJaA9DCK2JBb5iW3FAlIaUUpRoFU07AWgWR0CfhUtI065odX2UKGgGaAloD0MIyol2FVI6ckCUhpRSlGgVTVkBaBZHQJ+HVtZV4ot1fZQoaAZoCWgPQwhYq3ZNyIFvQJSGlFKUaBVNHgFoFkdAn4j5E6T4cnV9lChoBmgJaA9DCPsGJjcKBHFAlIaUUpRoFU0wAWgWR0CfjA12aDwpdX2UKGgGaAloD0MIpWjlXmDwbkCUhpRSlGgVTRwBaBZHQJ+NyIFeOXF1fZQoaAZoCWgPQwj8/zhhAvNwQJSGlFKUaBVNYQFoFkdAn4/aMm4RVnV9lChoBmgJaA9DCCdMGM2KsHBAlIaUUpRoFU0gAWgWR0CfktZm7J4jdX2UKGgGaAloD0MIyCWOPJCbb0CUhpRSlGgVTWgBaBZHQJ+VBLL6k691fZQoaAZoCWgPQwhFgqlmlhtwQJSGlFKUaBVNJwFoFkdAn5boiLVFyHV9lChoBmgJaA9DCDUqcLJNBXBAlIaUUpRoFU0fAWgWR0CfmKeGfwqidX2UKGgGaAloD0MIYCFzZdBqcECUhpRSlGgVTSYBaBZHQJ+brRzBAOd1fZQoaAZoCWgPQwjUDKmieIJtQJSGlFKUaBVNJAFoFkdAn51k690zTHV9lChoBmgJaA9DCFw8vOcAxnBAlIaUUpRoFU1YAWgWR0Cfn4Q1rIo3dX2UKGgGaAloD0MIa/P/qqMockCUhpRSlGgVTVsBaBZHQJ+jELux8lZ1fZQoaAZoCWgPQwhYxoZudvhuQJSGlFKUaBVNJgFoFkdAn6Tw7YChe3V9lChoBmgJaA9DCAa5izDFqnFAlIaUUpRoFU0WAWgWR0CfpqT9sJpndX2UKGgGaAloD0MIqtbCLLTYcECUhpRSlGgVTUwBaBZHQJ+p40BOpKl1fZQoaAZoCWgPQwjQYFPnUaJwQJSGlFKUaBVNSgFoFkdAn6vb+xW1dHV9lChoBmgJaA9DCOSG302321hAlIaUUpRoFU3oA2gWR0CftJcCYCyRdX2UKGgGaAloD0MII4JxcCl1cUCUhpRSlGgVTTgBaBZHQJ+2asCDEm91fZQoaAZoCWgPQwiFlJ9Ue9RsQJSGlFKUaBVNIQFoFkdAn7g8zl90BHV9lChoBmgJaA9DCIxJfy+FzHFAlIaUUpRoFU07AWgWR0Cfu146wMYudX2UKGgGaAloD0MINV66SQycckCUhpRSlGgVTRoBaBZHQJ+9BPxhDw91fZQoaAZoCWgPQwgVViqoqDRwQJSGlFKUaBVNIAFoFkdAn76+FHrhSHV9lChoBmgJaA9DCEJ6ihxipnBAlIaUUpRoFU0kAWgWR0CfwaV/+bVjdX2UKGgGaAloD0MIW9B7Y4gAbUCUhpRSlGgVTRUBaBZHQJ/DS36Q/5d1fZQoaAZoCWgPQwhlVBnGXUZxQJSGlFKUaBVNPAFoFkdAn8UqP0Zm7XV9lChoBmgJaA9DCMWqQZhbPWtAlIaUUpRoFU00AWgWR0CfyF5lOGj9dX2UKGgGaAloD0MIU+v9RrtvcUCUhpRSlGgVTUkBaBZHQJ/KX/DLr5Z1fZQoaAZoCWgPQwhf7pOjgLBxQJSGlFKUaBVNOwFoFkdAn8xq814xDnV9lChoBmgJaA9DCGqlEMgluXFAlIaUUpRoFU1aAWgWR0Cfzm/9pAUtdX2UKGgGaAloD0MIDfrS29/ccECUhpRSlGgVTSoBaBZHQJ/RdRjz7Mx1fZQoaAZoCWgPQwhHyECeXSVgQJSGlFKUaBVN6ANoFkdAn9tlN5+pfnV9lChoBmgJaA9DCJz9gXLbWnBAlIaUUpRoFU06AWgWR0Cf3UDEWIoFdX2UKGgGaAloD0MI3C401+l+cECUhpRSlGgVTTQBaBZHQJ/fKuX/o7p1fZQoaAZoCWgPQwgurYbEPU5rQJSGlFKUaBVNNgFoFkdAn+I/nKW9lHV9lChoBmgJaA9DCMLexJCcxWtAlIaUUpRoFU0eAWgWR0Cf4/Lmp2lmdX2UKGgGaAloD0MIP47myEqKckCUhpRSlGgVTQQBaBZHQJ/lZ8gIQe51fZQoaAZoCWgPQwho6nWLQEVyQJSGlFKUaBVNPgFoFkdAn+iquOjqOnV9lChoBmgJaA9DCFu21heJuG9AlIaUUpRoFU0yAWgWR0Cf6noiLVFydX2UKGgGaAloD0MI7PoFu6E3cECUhpRSlGgVTTsBaBZHQJ/sbch1Tzd1fZQoaAZoCWgPQwiXGqGfaSxwQJSGlFKUaBVNFAFoFkdAn+4kjcEeQ3V9lChoBmgJaA9DCMql8QsvM3JAlIaUUpRoFU1wAWgWR0Cf8eaZhKDkdX2UKGgGaAloD0MIhbLw9fWVckCUhpRSlGgVTWsBaBZHQJ/0Q6fapP11fZQoaAZoCWgPQwjOb5hoEEhwQJSGlFKUaBVNBQFoFkdAn/XYx59mYnV9lChoBmgJaA9DCC2Xjc75JHBAlIaUUpRoFU02AWgWR0Cf+PInjQzDdX2UKGgGaAloD0MIDAbX3NEdRkCUhpRSlGgVS/xoFkdAn/pZy+6AfHV9lChoBmgJaA9DCKNcGr9w+G1AlIaUUpRoFU0wAWgWR0Cf/D0HyEtedX2UKGgGaAloD0MINpIE4UrYcUCUhpRSlGgVTSgBaBZHQJ/+BmGucMF1fZQoaAZoCWgPQwixMa8jDuBtQJSGlFKUaBVNKQFoFkdAoACNyDIzWXV9lChoBmgJaA9DCPm7d9QYdnFAlIaUUpRoFU0aAWgWR0CgAVzkyULVdX2UKGgGaAloD0MIECVa8riqcECUhpRSlGgVTQMBaBZHQKACLlT3qRl1fZQoaAZoCWgPQwhkk/yIH7pwQJSGlFKUaBVNQwFoFkdAoAPCxzJZGXV9lChoBmgJaA9DCHhBRGpaQnFAlIaUUpRoFU0KAWgWR0CgBI9cry2AdX2UKGgGaAloD0MIGAXB41vbbECUhpRSlGgVTRgBaBZHQKAFYj3VTaV1fZQoaAZoCWgPQwiOBBpsas5vQJSGlFKUaBVNPQFoFkdAoAZsFQl8gXV9lChoBmgJaA9DCE5C6Qshz29AlIaUUpRoFU0aAWgWR0CgB9/oA4n4dX2UKGgGaAloD0MIFCS2u4c2Y0CUhpRSlGgVTegDaBZHQKAMIzUqhDh1fZQoaAZoCWgPQwgLmSuDamhvQJSGlFKUaBVNSAFoFkdAoA0cH0K7ZnV9lChoBmgJaA9DCJ2cobijA3NAlIaUUpRoFU0uAWgWR0CgDfx5LRKIdX2UKGgGaAloD0MIHxK+97dWY0CUhpRSlGgVTegDaBZHQKASPvSc9W91fZQoaAZoCWgPQwhpNo/DYGpwQJSGlFKUaBVNGwFoFkdAoBOpEfDDTHV9lChoBmgJaA9DCGRYxRsZrWxAlIaUUpRoFU0lAWgWR0CgFI37+DODdX2UKGgGaAloD0MI5QzFHW/3cECUhpRSlGgVTT8BaBZHQKAViMAFPi11fZQoaAZoCWgPQwjspL4srWZxQJSGlFKUaBVNEgFoFkdAoBZbeoDPnnV9lChoBmgJaA9DCKRyE7U0/HBAlIaUUpRoFU0/AWgWR0CgF/F0o0AMdX2UKGgGaAloD0MIR+NQv4uEcECUhpRSlGgVTT4BaBZHQKAY9CoCMgl1fZQoaAZoCWgPQwiHGoUks8RvQJSGlFKUaBVNCgFoFkdAoBnBCQcPv3V9lChoBmgJaA9DCBISaRu/t3BAlIaUUpRoFU0cAWgWR0CgG7EjX4CZdX2UKGgGaAloD0MIqwmi7kOocUCUhpRSlGgVTTUBaBZHQKAc83R5TqB1fZQoaAZoCWgPQwid9L7xtZVxQJSGlFKUaBVNYAFoFkdAoB5snJDE33V9lChoBmgJaA9DCE6c3O9Q3XFAlIaUUpRoFU0lAWgWR0CgIJh3JPqLdX2UKGgGaAloD0MIm64nui5ecECUhpRSlGgVTS0BaBZHQKAh5XMhX8x1fZQoaAZoCWgPQwjP91PjJQ1wQJSGlFKUaBVNLgFoFkdAoCLrDAJswnV9lChoBmgJaA9DCNdOlITEenJAlIaUUpRoFU0aAWgWR0CgI8YAS39adWUu"
74
+ },
75
+ "ep_success_buffer": {
76
+ ":type:": "<class 'collections.deque'>",
77
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
78
+ },
79
+ "_n_updates": 3908,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null
95
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9d296b94e6cd94e82998137ff91be9afef86dddbe7872259395a3aaa296be537
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d74a7ed000e03c806dae0ed0e13fc6f486a5a446b9f91d07c3d7247cb11bd9f5
3
+ size 43393
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.27 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.16
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.0+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.6
7
+ - Gym: 0.21.0
replay.mp4 ADDED
Binary file (245 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 264.0341481210745, "std_reward": 19.49192643202608, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-16T02:41:31.945257"}