--- language: - ko datasets: - kyujinpy/KoCoT_2000 library_name: transformers pipeline_tag: text-generation license: cc-by-nc-4.0 --- # **KoT-platypus2** ![img](./KoT-platypus2.png) **CoT + KO-platypus2 = KoT-platypus2** ## Model Details **Model Developers** Kyujin Han (kyujinpy) **Input** Models input text only. **Output** Models generate text only. **Model Architecture** KoT-platypus2-13B is an auto-regressive language model based on the LLaMA2 transformer architecture. **Repo Link** Github KoT-platypus: [KoT-platypus2](https://github.com/KyujinHan/KoT-platypus) **Base Model** [KO-Platypus2-7B-ex](https://huggingface.co/kyujinpy/KO-Platypus2-7B-ex) More detail repo(Github): [CoT-llama2](https://github.com/Marker-Inc-Korea/CoT-llama2) More detail repo(Github): [KO-Platypus2](https://github.com/Marker-Inc-Korea/KO-Platypus) **Training Dataset** I use [KoCoT_2000](https://huggingface.co/datasets/kyujinpy/KoCoT_2000). Using DeepL, translate about [kaist-CoT](https://huggingface.co/datasets/kaist-ai/CoT-Collection). I use A100 GPU 40GB and COLAB, when trianing. **Training Hyperparameters** | Hyperparameters | Value | | --- | --- | | batch_size | `64` | | micro_batch_size | `1` | | Epochs | `15` | | learning_rate | `1e-5` | | cutoff_len | `4096` | | lr_scheduler | `linear` | | base_model | `kyujinpy/KO-Platypus2-13B` | # **Model Benchmark** ## KO-LLM leaderboard - Follow up as [Open KO-LLM LeaderBoard](https://huggingface.co/spaces/upstage/open-ko-llm-leaderboard). ![img](./leaderboard.png) | Model | Average |Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 | | --- | --- | --- | --- | --- | --- | --- | |KoT-Platypus2-13B(ours) | 49.55 | 43.69 | 53.05 | 42.29 | 43.34 | 65.38 | | [KO-Platypus2-13B](https://huggingface.co/kyujinpy/KO-Platypus2-13B) | 47.90 | 44.20 | 54.31 | 42.47 | 44.41 | 54.11 | | [hyunseoki/ko-en-llama2-13b](https://huggingface.co/hyunseoki/ko-en-llama2-13b) | 46.68 | 42.15 | 54.23 | 38.90 | 40.74 | 57.39 | | [MarkrAI/kyujin-CoTy-platypus-ko-12.8b](https://huggingface.co/MarkrAI/kyujin-CoTy-platypus-ko-12.8b) | 46.44 | 34.98 | 49.11 | 25.68 | 37.59 | 84.86 | | [momo/polyglot-ko-12.8b-Chat-QLoRA-Merge](https://huggingface.co/momo/polyglot-ko-12.8b-Chat-QLoRA-Merge) | 45.71 | 35.49 | 49.93 | 25.97 | 39.43 | 77.70 | > Compare with Top 4 SOTA models. (update: 10/07) # Implementation Code ```python ### KO-Platypus from transformers import AutoModelForCausalLM, AutoTokenizer import torch repo = "kyujinpy/KoT-platypus2-13B" CoT-llama = AutoModelForCausalLM.from_pretrained( repo, return_dict=True, torch_dtype=torch.float16, device_map='auto' ) CoT-llama_tokenizer = AutoTokenizer.from_pretrained(repo) ``` > Readme format: [beomi/llama-2-ko-7b](https://huggingface.co/beomi/llama-2-ko-7b) ---