kyujinpy's picture
Upload README.md
2d04b9e
|
raw
history blame
2.13 kB
metadata
language:
  - en
datasets:
  - garage-bAInd/Open-Platypus
library_name: transformers
pipeline_tag: text-generation
license: cc-by-nc-sa-4.0

PlatYi-34B-Llama-Q-v3

Model Details

Model Developers Kyujin Han (kyujinpy)

Input Models input text only.

Output Models generate text only.

Model Architecture
PlatYi-34B-Llama-Q-v3 is an auto-regressive language model based on the Yi-34B transformer architecture.

Blog Link
Blog: [Coming soon...]
Github: [Coming soon...]

Base Model
chargoddard/Yi-34B-Llama

Training Dataset
garage-bAInd/Open-Platypus.

Fix some bugs

  • Before model, there is some mistakes.
  • I modified the templates and warmup_steps.

Notice

While training, I used Q-LoRA. The lora_r values is 64.

Model Benchmark

Open leaderboard

  • Follow up as link.
Model Average ARC HellaSwag MMLU TruthfulQA Winogrande GSM8K
PlatYi-34B-Llama-Q-v3 NaN NaN NaN NaN NaN NaN NaN
PlatYi-34B-Llama-Q-v2 NaN NaN NaN NaN NaN NaN NaN
PlatYi-34B-Llama-Q 71.13 65.70 85.22 78.78 53.64 83.03 60.42
PlatYi-34B-Llama 68.37 67.83 85.35 78.26 53.46 82.87 42.46
Yi-34B-Llama 70.95 64.59 85.63 76.31 55.60 82.79 60.80
Yi-34B 69.42 64.59 85.69 76.35 56.23 83.03 50.64

Implementation Code

### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

repo = "kyujinpy/PlatYi-34B-Llama-Q-v3"
OpenOrca = AutoModelForCausalLM.from_pretrained(
        repo,
        return_dict=True,
        torch_dtype=torch.float16,
        device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)