Update modeling_sliding_llama.py
Browse files- modeling_sliding_llama.py +29 -303
modeling_sliding_llama.py
CHANGED
@@ -29,7 +29,6 @@ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
|
29 |
from transformers.activations import ACT2FN
|
30 |
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
31 |
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
32 |
-
from transformers.modeling_flash_attention_utils import _flash_attention_forward
|
33 |
from transformers.modeling_outputs import (
|
34 |
BaseModelOutputWithPast,
|
35 |
CausalLMOutputWithPast,
|
@@ -47,13 +46,25 @@ from transformers.utils import (
|
|
47 |
logging,
|
48 |
replace_return_docstrings,
|
49 |
)
|
|
|
50 |
from configuration_sliding_llama import LlamaConfig
|
51 |
-
|
52 |
|
53 |
logger = logging.get_logger(__name__)
|
54 |
|
55 |
_CONFIG_FOR_DOC = "LlamaConfig"
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
class LlamaRMSNorm(nn.Module):
|
58 |
def __init__(self, hidden_size, eps=1e-6):
|
59 |
"""
|
@@ -267,43 +278,11 @@ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
|
267 |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
268 |
|
269 |
|
270 |
-
class LlamaAttention
|
271 |
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
272 |
|
273 |
-
def __init__(self,
|
274 |
-
super().__init__()
|
275 |
-
self.config = config
|
276 |
-
self.layer_idx = layer_idx
|
277 |
-
if layer_idx is None:
|
278 |
-
logger.warning_once(
|
279 |
-
f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
|
280 |
-
"lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
|
281 |
-
"when creating this class."
|
282 |
-
)
|
283 |
-
|
284 |
-
self.attention_dropout = config.attention_dropout
|
285 |
-
self.hidden_size = config.hidden_size
|
286 |
-
self.num_heads = config.num_attention_heads
|
287 |
-
self.head_dim = self.hidden_size // self.num_heads
|
288 |
-
self.num_key_value_heads = config.num_key_value_heads
|
289 |
-
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
290 |
-
self.max_position_embeddings = config.max_position_embeddings
|
291 |
-
self.rope_theta = config.rope_theta
|
292 |
-
self.is_causal = True
|
293 |
-
|
294 |
-
if (self.head_dim * self.num_heads) != self.hidden_size:
|
295 |
-
raise ValueError(
|
296 |
-
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
|
297 |
-
f" and `num_heads`: {self.num_heads})."
|
298 |
-
)
|
299 |
-
|
300 |
-
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=config.attention_bias)
|
301 |
-
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
302 |
-
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=config.attention_bias)
|
303 |
-
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.attention_bias)
|
304 |
-
|
305 |
-
# TODO (joao): remove in v4.45 (RoPE is computed in the model, not in the decoder layers)
|
306 |
-
self.rotary_emb = LlamaRotaryEmbedding(config=self.config)
|
307 |
|
308 |
def forward(
|
309 |
self,
|
@@ -365,16 +344,18 @@ class LlamaAttention(nn.Module):
|
|
365 |
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
366 |
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
367 |
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
|
|
|
|
378 |
|
379 |
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
380 |
raise ValueError(
|
@@ -398,263 +379,8 @@ class LlamaAttention(nn.Module):
|
|
398 |
|
399 |
return attn_output, attn_weights, past_key_value
|
400 |
|
401 |
-
|
402 |
-
class LlamaFlashAttention2(LlamaAttention):
|
403 |
-
"""
|
404 |
-
Llama flash attention module. This module inherits from `LlamaAttention` as the weights of the module stays
|
405 |
-
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
406 |
-
flash attention and deal with padding tokens in case the input contains any of them.
|
407 |
-
"""
|
408 |
-
|
409 |
-
def __init__(self, *args, **kwargs):
|
410 |
-
super().__init__(*args, **kwargs)
|
411 |
-
|
412 |
-
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
413 |
-
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
414 |
-
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
415 |
-
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
416 |
-
|
417 |
-
def forward(
|
418 |
-
self,
|
419 |
-
hidden_states: torch.Tensor,
|
420 |
-
attention_mask: Optional[torch.LongTensor] = None,
|
421 |
-
position_ids: Optional[torch.LongTensor] = None,
|
422 |
-
past_key_value: Optional[Cache] = None,
|
423 |
-
output_attentions: bool = False,
|
424 |
-
use_cache: bool = False,
|
425 |
-
cache_position: Optional[torch.LongTensor] = None,
|
426 |
-
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
|
427 |
-
**kwargs,
|
428 |
-
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
429 |
-
if isinstance(past_key_value, StaticCache):
|
430 |
-
raise ValueError(
|
431 |
-
"`static` cache implementation is not compatible with `attn_implementation==flash_attention_2` "
|
432 |
-
"make sure to use `sdpa` in the mean time, and open an issue at https://github.com/huggingface/transformers"
|
433 |
-
)
|
434 |
-
|
435 |
-
output_attentions = False
|
436 |
-
|
437 |
-
bsz, q_len, _ = hidden_states.size()
|
438 |
-
|
439 |
-
query_states = self.q_proj(hidden_states)
|
440 |
-
key_states = self.k_proj(hidden_states)
|
441 |
-
value_states = self.v_proj(hidden_states)
|
442 |
-
|
443 |
-
# Flash attention requires the input to have the shape
|
444 |
-
# batch_size x seq_length x head_dim x hidden_dim
|
445 |
-
# therefore we just need to keep the original shape
|
446 |
-
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
447 |
-
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
448 |
-
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
449 |
-
|
450 |
-
if position_embeddings is None:
|
451 |
-
logger.warning_once(
|
452 |
-
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
453 |
-
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
454 |
-
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.45 `position_ids` will be "
|
455 |
-
"removed and `position_embeddings` will be mandatory."
|
456 |
-
)
|
457 |
-
cos, sin = self.rotary_emb(value_states, position_ids)
|
458 |
-
else:
|
459 |
-
cos, sin = position_embeddings
|
460 |
-
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
461 |
-
|
462 |
-
use_sliding_windows = (
|
463 |
-
getattr(self.config, "sliding_windows", None) is not None
|
464 |
-
and self.config.sliding_windows[self.layer_idx] > 0
|
465 |
-
)
|
466 |
-
|
467 |
-
if past_key_value is not None:
|
468 |
-
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
469 |
-
cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
|
470 |
-
if (
|
471 |
-
getattr(self.config, "sliding_windows", None) is not None
|
472 |
-
and cache_has_contents
|
473 |
-
and self.config.sliding_windows[self.layer_idx] > 0
|
474 |
-
):
|
475 |
-
slicing_tokens = 1 - self.config.sliding_windows[self.layer_idx]
|
476 |
-
|
477 |
-
past_key = past_key_value.key_cache[self.layer_idx]
|
478 |
-
past_value = past_key_value.value_cache[self.layer_idx]
|
479 |
-
|
480 |
-
past_key = past_key[:, :, slicing_tokens:, :].contiguous()
|
481 |
-
past_value = past_value[:, :, slicing_tokens:, :].contiguous()
|
482 |
-
|
483 |
-
if past_key.shape[-2] != self.config.sliding_windows[self.layer_idx] - 1:
|
484 |
-
raise ValueError(
|
485 |
-
f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_windows[self.layer_idx]-1, head_dim`), got"
|
486 |
-
f" {past_key.shape}"
|
487 |
-
)
|
488 |
-
|
489 |
-
if attention_mask is not None:
|
490 |
-
attention_mask = attention_mask[:, slicing_tokens:]
|
491 |
-
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
|
492 |
-
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
493 |
-
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
494 |
-
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
495 |
-
|
496 |
-
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
497 |
-
# to be able to avoid many of these transpose/reshape/view.
|
498 |
-
query_states = query_states.transpose(1, 2)
|
499 |
-
key_states = key_states.transpose(1, 2)
|
500 |
-
value_states = value_states.transpose(1, 2)
|
501 |
-
|
502 |
-
dropout_rate = self.attention_dropout if self.training else 0.0
|
503 |
-
|
504 |
-
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
505 |
-
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
506 |
-
# cast them back in the correct dtype just to be sure everything works as expected.
|
507 |
-
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
508 |
-
# in fp32. (LlamaRMSNorm handles it correctly)
|
509 |
-
|
510 |
-
input_dtype = query_states.dtype
|
511 |
-
if input_dtype == torch.float32:
|
512 |
-
if torch.is_autocast_enabled():
|
513 |
-
target_dtype = torch.get_autocast_gpu_dtype()
|
514 |
-
# Handle the case where the model is quantized
|
515 |
-
elif hasattr(self.config, "_pre_quantization_dtype"):
|
516 |
-
target_dtype = self.config._pre_quantization_dtype
|
517 |
-
else:
|
518 |
-
target_dtype = self.q_proj.weight.dtype
|
519 |
-
|
520 |
-
logger.warning_once(
|
521 |
-
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
522 |
-
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
523 |
-
f" {target_dtype}."
|
524 |
-
)
|
525 |
-
|
526 |
-
query_states = query_states.to(target_dtype)
|
527 |
-
key_states = key_states.to(target_dtype)
|
528 |
-
value_states = value_states.to(target_dtype)
|
529 |
-
|
530 |
-
sliding_window = self.config.sliding_windows[self.layer_idx]
|
531 |
-
if sliding_window == 0:
|
532 |
-
sliding_window = None
|
533 |
-
|
534 |
-
attn_output = _flash_attention_forward(
|
535 |
-
query_states,
|
536 |
-
key_states,
|
537 |
-
value_states,
|
538 |
-
attention_mask,
|
539 |
-
q_len,
|
540 |
-
position_ids=position_ids,
|
541 |
-
dropout=dropout_rate,
|
542 |
-
sliding_window=sliding_window,
|
543 |
-
use_top_left_mask=self._flash_attn_uses_top_left_mask,
|
544 |
-
is_causal=self.is_causal,
|
545 |
-
)
|
546 |
-
|
547 |
-
attn_output = attn_output.reshape(bsz, q_len, -1).contiguous()
|
548 |
-
attn_output = self.o_proj(attn_output)
|
549 |
-
|
550 |
-
if not output_attentions:
|
551 |
-
attn_weights = None
|
552 |
-
|
553 |
-
return attn_output, attn_weights, past_key_value
|
554 |
-
|
555 |
-
|
556 |
-
class LlamaSdpaAttention(LlamaAttention):
|
557 |
-
"""
|
558 |
-
Llama attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
559 |
-
`LlamaAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
560 |
-
SDPA API.
|
561 |
-
"""
|
562 |
-
|
563 |
-
# Adapted from LlamaAttention.forward
|
564 |
-
def forward(
|
565 |
-
self,
|
566 |
-
hidden_states: torch.Tensor,
|
567 |
-
attention_mask: Optional[torch.Tensor] = None,
|
568 |
-
position_ids: Optional[torch.LongTensor] = None,
|
569 |
-
past_key_value: Optional[Cache] = None,
|
570 |
-
output_attentions: bool = False,
|
571 |
-
use_cache: bool = False,
|
572 |
-
cache_position: Optional[torch.LongTensor] = None,
|
573 |
-
position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.45
|
574 |
-
**kwargs
|
575 |
-
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
576 |
-
if output_attentions:
|
577 |
-
# TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
|
578 |
-
logger.warning_once(
|
579 |
-
"LlamaModel is using LlamaSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
|
580 |
-
'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
581 |
-
)
|
582 |
-
return super().forward(
|
583 |
-
hidden_states=hidden_states,
|
584 |
-
attention_mask=attention_mask,
|
585 |
-
position_ids=position_ids,
|
586 |
-
past_key_value=past_key_value,
|
587 |
-
output_attentions=output_attentions,
|
588 |
-
use_cache=use_cache,
|
589 |
-
cache_position=cache_position,
|
590 |
-
)
|
591 |
-
|
592 |
-
bsz, q_len, _ = hidden_states.size()
|
593 |
-
|
594 |
-
query_states = self.q_proj(hidden_states)
|
595 |
-
key_states = self.k_proj(hidden_states)
|
596 |
-
value_states = self.v_proj(hidden_states)
|
597 |
-
|
598 |
-
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
599 |
-
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
600 |
-
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
601 |
-
|
602 |
-
if position_embeddings is None:
|
603 |
-
logger.warning_once(
|
604 |
-
"The attention layers in this model are transitioning from computing the RoPE embeddings internally "
|
605 |
-
"through `position_ids` (2D tensor with the indexes of the tokens), to using externally computed "
|
606 |
-
"`position_embeddings` (Tuple of tensors, containing cos and sin). In v4.45 `position_ids` will be "
|
607 |
-
"removed and `position_embeddings` will be mandatory."
|
608 |
-
)
|
609 |
-
cos, sin = self.rotary_emb(value_states, position_ids)
|
610 |
-
else:
|
611 |
-
cos, sin = position_embeddings
|
612 |
-
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
613 |
-
|
614 |
-
if past_key_value is not None:
|
615 |
-
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
616 |
-
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
617 |
-
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
618 |
-
|
619 |
-
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
620 |
-
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
621 |
-
|
622 |
-
causal_mask = attention_mask
|
623 |
-
if attention_mask is not None:
|
624 |
-
causal_mask = causal_mask[:, :, :, : key_states.shape[-2]]
|
625 |
-
|
626 |
-
# SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
|
627 |
-
# Reference: https://github.com/pytorch/pytorch/issues/112577.
|
628 |
-
if query_states.device.type == "cuda" and causal_mask is not None:
|
629 |
-
query_states = query_states.contiguous()
|
630 |
-
key_states = key_states.contiguous()
|
631 |
-
value_states = value_states.contiguous()
|
632 |
-
|
633 |
-
# We dispatch to SDPA's Flash Attention or Efficient kernels via this if statement instead of an
|
634 |
-
# inline conditional assignment to support both torch.compile's `dynamic=True` and `fullgraph=True`
|
635 |
-
is_causal = True if causal_mask is None and q_len > 1 else False
|
636 |
-
|
637 |
-
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
638 |
-
query_states,
|
639 |
-
key_states,
|
640 |
-
value_states,
|
641 |
-
attn_mask=causal_mask,
|
642 |
-
dropout_p=self.attention_dropout if self.training else 0.0,
|
643 |
-
is_causal=is_causal,
|
644 |
-
)
|
645 |
-
|
646 |
-
attn_output = attn_output.transpose(1, 2).contiguous()
|
647 |
-
attn_output = attn_output.view(bsz, q_len, self.hidden_size)
|
648 |
-
|
649 |
-
attn_output = self.o_proj(attn_output)
|
650 |
-
|
651 |
-
return attn_output, None, past_key_value
|
652 |
-
|
653 |
-
|
654 |
LLAMA_ATTENTION_CLASSES = {
|
655 |
-
"eager":
|
656 |
-
"flash_attention_2": LlamaFlashAttention2,
|
657 |
-
"sdpa": LlamaSdpaAttention,
|
658 |
}
|
659 |
|
660 |
|
|
|
29 |
from transformers.activations import ACT2FN
|
30 |
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
31 |
from transformers.modeling_attn_mask_utils import AttentionMaskConverter
|
|
|
32 |
from transformers.modeling_outputs import (
|
33 |
BaseModelOutputWithPast,
|
34 |
CausalLMOutputWithPast,
|
|
|
46 |
logging,
|
47 |
replace_return_docstrings,
|
48 |
)
|
49 |
+
from transformers.models.llama.modeling_llama import LlamaAttention
|
50 |
from configuration_sliding_llama import LlamaConfig
|
51 |
+
from torch.nn.attention.flex_attention import flex_attention, create_block_mask
|
52 |
|
53 |
logger = logging.get_logger(__name__)
|
54 |
|
55 |
_CONFIG_FOR_DOC = "LlamaConfig"
|
56 |
|
57 |
+
def attn_causal(b, h, q_idx, kv_idx):
|
58 |
+
causal_mask = q_idx >= kv_idx
|
59 |
+
return causal_mask
|
60 |
+
|
61 |
+
def stream_attn_causal(b, h, q_idx, kv_idx, attn_sink_size, sliding_window):
|
62 |
+
causal_mask = q_idx >= kv_idx
|
63 |
+
window_mask = q_idx - kv_idx <= sliding_window
|
64 |
+
sink_mask = kv_idx < attn_sink_size
|
65 |
+
return causal_mask & (window_mask | sink_mask)
|
66 |
+
|
67 |
+
|
68 |
class LlamaRMSNorm(nn.Module):
|
69 |
def __init__(self, hidden_size, eps=1e-6):
|
70 |
"""
|
|
|
278 |
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
279 |
|
280 |
|
281 |
+
class LlamaStreamingFlexAttention(LlamaAttention):
|
282 |
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
283 |
|
284 |
+
def __init__(self, *args, **kwargs):
|
285 |
+
super().__init__(*args, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
|
287 |
def forward(
|
288 |
self,
|
|
|
344 |
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
345 |
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
346 |
|
347 |
+
sliding_window_size = self.config.sliding_windows[self.layer_idx]
|
348 |
+
if sliding_window_size > 0:
|
349 |
+
block_mask = create_block_mask(
|
350 |
+
lambda b, h, q_idx, kv_idx: stream_attn_causal(b, h, q_idx, kv_idx, 4, sliding_window_size),
|
351 |
+
B=None, H=None, Q_LEN=query_states.shape[1], KV_LEN=key_states.shape[1]
|
352 |
+
)
|
353 |
+
else:
|
354 |
+
block_mask = create_block_mask(
|
355 |
+
lambda b, h, q_idx, kv_idx: attn_causal(b, h, q_idx, kv_idx),
|
356 |
+
B=None, H=None, Q_LEN=query_states.shape[1], KV_LEN=key_states.shape[1]
|
357 |
+
)
|
358 |
+
attn_output = flex_attention(query_states, key_states, value_states, block_mask=block_mask)
|
359 |
|
360 |
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
|
361 |
raise ValueError(
|
|
|
379 |
|
380 |
return attn_output, attn_weights, past_key_value
|
381 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
382 |
LLAMA_ATTENTION_CLASSES = {
|
383 |
+
"eager": LlamaStreamingFlexAttention
|
|
|
|
|
384 |
}
|
385 |
|
386 |
|