Upload README.md with huggingface_hub
Browse files
README.md
ADDED
@@ -0,0 +1,1105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- mteb
|
4 |
+
- llama-cpp
|
5 |
+
- gguf-my-repo
|
6 |
+
license: cc-by-nc-4.0
|
7 |
+
library_name: sentence-transformers
|
8 |
+
base_model: TencentBAC/Conan-embedding-v1
|
9 |
+
model-index:
|
10 |
+
- name: conan-embedding
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
type: STS
|
14 |
+
dataset:
|
15 |
+
name: MTEB AFQMC
|
16 |
+
type: C-MTEB/AFQMC
|
17 |
+
config: default
|
18 |
+
split: validation
|
19 |
+
revision: None
|
20 |
+
metrics:
|
21 |
+
- type: cos_sim_pearson
|
22 |
+
value: 56.613572467148856
|
23 |
+
- type: cos_sim_spearman
|
24 |
+
value: 60.66446211824284
|
25 |
+
- type: euclidean_pearson
|
26 |
+
value: 58.42080485872613
|
27 |
+
- type: euclidean_spearman
|
28 |
+
value: 59.82750030458164
|
29 |
+
- type: manhattan_pearson
|
30 |
+
value: 58.39885271199772
|
31 |
+
- type: manhattan_spearman
|
32 |
+
value: 59.817749720366734
|
33 |
+
- task:
|
34 |
+
type: STS
|
35 |
+
dataset:
|
36 |
+
name: MTEB ATEC
|
37 |
+
type: C-MTEB/ATEC
|
38 |
+
config: default
|
39 |
+
split: test
|
40 |
+
revision: None
|
41 |
+
metrics:
|
42 |
+
- type: cos_sim_pearson
|
43 |
+
value: 56.60530380552331
|
44 |
+
- type: cos_sim_spearman
|
45 |
+
value: 58.63822441736707
|
46 |
+
- type: euclidean_pearson
|
47 |
+
value: 62.18551665180664
|
48 |
+
- type: euclidean_spearman
|
49 |
+
value: 58.23168804495912
|
50 |
+
- type: manhattan_pearson
|
51 |
+
value: 62.17191480770053
|
52 |
+
- type: manhattan_spearman
|
53 |
+
value: 58.22556219601401
|
54 |
+
- task:
|
55 |
+
type: Classification
|
56 |
+
dataset:
|
57 |
+
name: MTEB AmazonReviewsClassification (zh)
|
58 |
+
type: mteb/amazon_reviews_multi
|
59 |
+
config: zh
|
60 |
+
split: test
|
61 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
62 |
+
metrics:
|
63 |
+
- type: accuracy
|
64 |
+
value: 50.308
|
65 |
+
- type: f1
|
66 |
+
value: 46.927458607895126
|
67 |
+
- task:
|
68 |
+
type: STS
|
69 |
+
dataset:
|
70 |
+
name: MTEB BQ
|
71 |
+
type: C-MTEB/BQ
|
72 |
+
config: default
|
73 |
+
split: test
|
74 |
+
revision: None
|
75 |
+
metrics:
|
76 |
+
- type: cos_sim_pearson
|
77 |
+
value: 72.6472074172711
|
78 |
+
- type: cos_sim_spearman
|
79 |
+
value: 74.50748447236577
|
80 |
+
- type: euclidean_pearson
|
81 |
+
value: 72.51833296451854
|
82 |
+
- type: euclidean_spearman
|
83 |
+
value: 73.9898922606105
|
84 |
+
- type: manhattan_pearson
|
85 |
+
value: 72.50184948939338
|
86 |
+
- type: manhattan_spearman
|
87 |
+
value: 73.97797921509638
|
88 |
+
- task:
|
89 |
+
type: Clustering
|
90 |
+
dataset:
|
91 |
+
name: MTEB CLSClusteringP2P
|
92 |
+
type: C-MTEB/CLSClusteringP2P
|
93 |
+
config: default
|
94 |
+
split: test
|
95 |
+
revision: None
|
96 |
+
metrics:
|
97 |
+
- type: v_measure
|
98 |
+
value: 60.63545326048343
|
99 |
+
- task:
|
100 |
+
type: Clustering
|
101 |
+
dataset:
|
102 |
+
name: MTEB CLSClusteringS2S
|
103 |
+
type: C-MTEB/CLSClusteringS2S
|
104 |
+
config: default
|
105 |
+
split: test
|
106 |
+
revision: None
|
107 |
+
metrics:
|
108 |
+
- type: v_measure
|
109 |
+
value: 52.64834762325994
|
110 |
+
- task:
|
111 |
+
type: Reranking
|
112 |
+
dataset:
|
113 |
+
name: MTEB CMedQAv1
|
114 |
+
type: C-MTEB/CMedQAv1-reranking
|
115 |
+
config: default
|
116 |
+
split: test
|
117 |
+
revision: None
|
118 |
+
metrics:
|
119 |
+
- type: map
|
120 |
+
value: 91.38528814655234
|
121 |
+
- type: mrr
|
122 |
+
value: 93.35857142857144
|
123 |
+
- task:
|
124 |
+
type: Reranking
|
125 |
+
dataset:
|
126 |
+
name: MTEB CMedQAv2
|
127 |
+
type: C-MTEB/CMedQAv2-reranking
|
128 |
+
config: default
|
129 |
+
split: test
|
130 |
+
revision: None
|
131 |
+
metrics:
|
132 |
+
- type: map
|
133 |
+
value: 89.72084678877096
|
134 |
+
- type: mrr
|
135 |
+
value: 91.74380952380953
|
136 |
+
- task:
|
137 |
+
type: Retrieval
|
138 |
+
dataset:
|
139 |
+
name: MTEB CmedqaRetrieval
|
140 |
+
type: C-MTEB/CmedqaRetrieval
|
141 |
+
config: default
|
142 |
+
split: dev
|
143 |
+
revision: None
|
144 |
+
metrics:
|
145 |
+
- type: map_at_1
|
146 |
+
value: 26.987
|
147 |
+
- type: map_at_10
|
148 |
+
value: 40.675
|
149 |
+
- type: map_at_100
|
150 |
+
value: 42.495
|
151 |
+
- type: map_at_1000
|
152 |
+
value: 42.596000000000004
|
153 |
+
- type: map_at_3
|
154 |
+
value: 36.195
|
155 |
+
- type: map_at_5
|
156 |
+
value: 38.704
|
157 |
+
- type: mrr_at_1
|
158 |
+
value: 41.21
|
159 |
+
- type: mrr_at_10
|
160 |
+
value: 49.816
|
161 |
+
- type: mrr_at_100
|
162 |
+
value: 50.743
|
163 |
+
- type: mrr_at_1000
|
164 |
+
value: 50.77700000000001
|
165 |
+
- type: mrr_at_3
|
166 |
+
value: 47.312
|
167 |
+
- type: mrr_at_5
|
168 |
+
value: 48.699999999999996
|
169 |
+
- type: ndcg_at_1
|
170 |
+
value: 41.21
|
171 |
+
- type: ndcg_at_10
|
172 |
+
value: 47.606
|
173 |
+
- type: ndcg_at_100
|
174 |
+
value: 54.457
|
175 |
+
- type: ndcg_at_1000
|
176 |
+
value: 56.16100000000001
|
177 |
+
- type: ndcg_at_3
|
178 |
+
value: 42.108000000000004
|
179 |
+
- type: ndcg_at_5
|
180 |
+
value: 44.393
|
181 |
+
- type: precision_at_1
|
182 |
+
value: 41.21
|
183 |
+
- type: precision_at_10
|
184 |
+
value: 10.593
|
185 |
+
- type: precision_at_100
|
186 |
+
value: 1.609
|
187 |
+
- type: precision_at_1000
|
188 |
+
value: 0.183
|
189 |
+
- type: precision_at_3
|
190 |
+
value: 23.881
|
191 |
+
- type: precision_at_5
|
192 |
+
value: 17.339
|
193 |
+
- type: recall_at_1
|
194 |
+
value: 26.987
|
195 |
+
- type: recall_at_10
|
196 |
+
value: 58.875
|
197 |
+
- type: recall_at_100
|
198 |
+
value: 87.023
|
199 |
+
- type: recall_at_1000
|
200 |
+
value: 98.328
|
201 |
+
- type: recall_at_3
|
202 |
+
value: 42.265
|
203 |
+
- type: recall_at_5
|
204 |
+
value: 49.334
|
205 |
+
- task:
|
206 |
+
type: PairClassification
|
207 |
+
dataset:
|
208 |
+
name: MTEB Cmnli
|
209 |
+
type: C-MTEB/CMNLI
|
210 |
+
config: default
|
211 |
+
split: validation
|
212 |
+
revision: None
|
213 |
+
metrics:
|
214 |
+
- type: cos_sim_accuracy
|
215 |
+
value: 85.91701743836441
|
216 |
+
- type: cos_sim_ap
|
217 |
+
value: 92.53650618807644
|
218 |
+
- type: cos_sim_f1
|
219 |
+
value: 86.80265975431082
|
220 |
+
- type: cos_sim_precision
|
221 |
+
value: 83.79025239338556
|
222 |
+
- type: cos_sim_recall
|
223 |
+
value: 90.039747486556
|
224 |
+
- type: dot_accuracy
|
225 |
+
value: 77.17378232110643
|
226 |
+
- type: dot_ap
|
227 |
+
value: 85.40244368166546
|
228 |
+
- type: dot_f1
|
229 |
+
value: 79.03038001481951
|
230 |
+
- type: dot_precision
|
231 |
+
value: 72.20502901353966
|
232 |
+
- type: dot_recall
|
233 |
+
value: 87.2808043020809
|
234 |
+
- type: euclidean_accuracy
|
235 |
+
value: 84.65423932651834
|
236 |
+
- type: euclidean_ap
|
237 |
+
value: 91.47775530034588
|
238 |
+
- type: euclidean_f1
|
239 |
+
value: 85.64471499723298
|
240 |
+
- type: euclidean_precision
|
241 |
+
value: 81.31567885666246
|
242 |
+
- type: euclidean_recall
|
243 |
+
value: 90.46060322656068
|
244 |
+
- type: manhattan_accuracy
|
245 |
+
value: 84.58208057726999
|
246 |
+
- type: manhattan_ap
|
247 |
+
value: 91.46228709402014
|
248 |
+
- type: manhattan_f1
|
249 |
+
value: 85.6631626034444
|
250 |
+
- type: manhattan_precision
|
251 |
+
value: 82.10075026795283
|
252 |
+
- type: manhattan_recall
|
253 |
+
value: 89.5487491232172
|
254 |
+
- type: max_accuracy
|
255 |
+
value: 85.91701743836441
|
256 |
+
- type: max_ap
|
257 |
+
value: 92.53650618807644
|
258 |
+
- type: max_f1
|
259 |
+
value: 86.80265975431082
|
260 |
+
- task:
|
261 |
+
type: Retrieval
|
262 |
+
dataset:
|
263 |
+
name: MTEB CovidRetrieval
|
264 |
+
type: C-MTEB/CovidRetrieval
|
265 |
+
config: default
|
266 |
+
split: dev
|
267 |
+
revision: None
|
268 |
+
metrics:
|
269 |
+
- type: map_at_1
|
270 |
+
value: 83.693
|
271 |
+
- type: map_at_10
|
272 |
+
value: 90.098
|
273 |
+
- type: map_at_100
|
274 |
+
value: 90.145
|
275 |
+
- type: map_at_1000
|
276 |
+
value: 90.146
|
277 |
+
- type: map_at_3
|
278 |
+
value: 89.445
|
279 |
+
- type: map_at_5
|
280 |
+
value: 89.935
|
281 |
+
- type: mrr_at_1
|
282 |
+
value: 83.878
|
283 |
+
- type: mrr_at_10
|
284 |
+
value: 90.007
|
285 |
+
- type: mrr_at_100
|
286 |
+
value: 90.045
|
287 |
+
- type: mrr_at_1000
|
288 |
+
value: 90.046
|
289 |
+
- type: mrr_at_3
|
290 |
+
value: 89.34
|
291 |
+
- type: mrr_at_5
|
292 |
+
value: 89.835
|
293 |
+
- type: ndcg_at_1
|
294 |
+
value: 84.089
|
295 |
+
- type: ndcg_at_10
|
296 |
+
value: 92.351
|
297 |
+
- type: ndcg_at_100
|
298 |
+
value: 92.54599999999999
|
299 |
+
- type: ndcg_at_1000
|
300 |
+
value: 92.561
|
301 |
+
- type: ndcg_at_3
|
302 |
+
value: 91.15299999999999
|
303 |
+
- type: ndcg_at_5
|
304 |
+
value: 91.968
|
305 |
+
- type: precision_at_1
|
306 |
+
value: 84.089
|
307 |
+
- type: precision_at_10
|
308 |
+
value: 10.011000000000001
|
309 |
+
- type: precision_at_100
|
310 |
+
value: 1.009
|
311 |
+
- type: precision_at_1000
|
312 |
+
value: 0.101
|
313 |
+
- type: precision_at_3
|
314 |
+
value: 32.28
|
315 |
+
- type: precision_at_5
|
316 |
+
value: 19.789
|
317 |
+
- type: recall_at_1
|
318 |
+
value: 83.693
|
319 |
+
- type: recall_at_10
|
320 |
+
value: 99.05199999999999
|
321 |
+
- type: recall_at_100
|
322 |
+
value: 99.895
|
323 |
+
- type: recall_at_1000
|
324 |
+
value: 100
|
325 |
+
- type: recall_at_3
|
326 |
+
value: 95.917
|
327 |
+
- type: recall_at_5
|
328 |
+
value: 97.893
|
329 |
+
- task:
|
330 |
+
type: Retrieval
|
331 |
+
dataset:
|
332 |
+
name: MTEB DuRetrieval
|
333 |
+
type: C-MTEB/DuRetrieval
|
334 |
+
config: default
|
335 |
+
split: dev
|
336 |
+
revision: None
|
337 |
+
metrics:
|
338 |
+
- type: map_at_1
|
339 |
+
value: 26.924
|
340 |
+
- type: map_at_10
|
341 |
+
value: 81.392
|
342 |
+
- type: map_at_100
|
343 |
+
value: 84.209
|
344 |
+
- type: map_at_1000
|
345 |
+
value: 84.237
|
346 |
+
- type: map_at_3
|
347 |
+
value: 56.998000000000005
|
348 |
+
- type: map_at_5
|
349 |
+
value: 71.40100000000001
|
350 |
+
- type: mrr_at_1
|
351 |
+
value: 91.75
|
352 |
+
- type: mrr_at_10
|
353 |
+
value: 94.45
|
354 |
+
- type: mrr_at_100
|
355 |
+
value: 94.503
|
356 |
+
- type: mrr_at_1000
|
357 |
+
value: 94.505
|
358 |
+
- type: mrr_at_3
|
359 |
+
value: 94.258
|
360 |
+
- type: mrr_at_5
|
361 |
+
value: 94.381
|
362 |
+
- type: ndcg_at_1
|
363 |
+
value: 91.75
|
364 |
+
- type: ndcg_at_10
|
365 |
+
value: 88.53
|
366 |
+
- type: ndcg_at_100
|
367 |
+
value: 91.13900000000001
|
368 |
+
- type: ndcg_at_1000
|
369 |
+
value: 91.387
|
370 |
+
- type: ndcg_at_3
|
371 |
+
value: 87.925
|
372 |
+
- type: ndcg_at_5
|
373 |
+
value: 86.461
|
374 |
+
- type: precision_at_1
|
375 |
+
value: 91.75
|
376 |
+
- type: precision_at_10
|
377 |
+
value: 42.05
|
378 |
+
- type: precision_at_100
|
379 |
+
value: 4.827
|
380 |
+
- type: precision_at_1000
|
381 |
+
value: 0.48900000000000005
|
382 |
+
- type: precision_at_3
|
383 |
+
value: 78.55
|
384 |
+
- type: precision_at_5
|
385 |
+
value: 65.82000000000001
|
386 |
+
- type: recall_at_1
|
387 |
+
value: 26.924
|
388 |
+
- type: recall_at_10
|
389 |
+
value: 89.338
|
390 |
+
- type: recall_at_100
|
391 |
+
value: 97.856
|
392 |
+
- type: recall_at_1000
|
393 |
+
value: 99.11
|
394 |
+
- type: recall_at_3
|
395 |
+
value: 59.202999999999996
|
396 |
+
- type: recall_at_5
|
397 |
+
value: 75.642
|
398 |
+
- task:
|
399 |
+
type: Retrieval
|
400 |
+
dataset:
|
401 |
+
name: MTEB EcomRetrieval
|
402 |
+
type: C-MTEB/EcomRetrieval
|
403 |
+
config: default
|
404 |
+
split: dev
|
405 |
+
revision: None
|
406 |
+
metrics:
|
407 |
+
- type: map_at_1
|
408 |
+
value: 54.800000000000004
|
409 |
+
- type: map_at_10
|
410 |
+
value: 65.613
|
411 |
+
- type: map_at_100
|
412 |
+
value: 66.185
|
413 |
+
- type: map_at_1000
|
414 |
+
value: 66.191
|
415 |
+
- type: map_at_3
|
416 |
+
value: 62.8
|
417 |
+
- type: map_at_5
|
418 |
+
value: 64.535
|
419 |
+
- type: mrr_at_1
|
420 |
+
value: 54.800000000000004
|
421 |
+
- type: mrr_at_10
|
422 |
+
value: 65.613
|
423 |
+
- type: mrr_at_100
|
424 |
+
value: 66.185
|
425 |
+
- type: mrr_at_1000
|
426 |
+
value: 66.191
|
427 |
+
- type: mrr_at_3
|
428 |
+
value: 62.8
|
429 |
+
- type: mrr_at_5
|
430 |
+
value: 64.535
|
431 |
+
- type: ndcg_at_1
|
432 |
+
value: 54.800000000000004
|
433 |
+
- type: ndcg_at_10
|
434 |
+
value: 70.991
|
435 |
+
- type: ndcg_at_100
|
436 |
+
value: 73.434
|
437 |
+
- type: ndcg_at_1000
|
438 |
+
value: 73.587
|
439 |
+
- type: ndcg_at_3
|
440 |
+
value: 65.324
|
441 |
+
- type: ndcg_at_5
|
442 |
+
value: 68.431
|
443 |
+
- type: precision_at_1
|
444 |
+
value: 54.800000000000004
|
445 |
+
- type: precision_at_10
|
446 |
+
value: 8.790000000000001
|
447 |
+
- type: precision_at_100
|
448 |
+
value: 0.9860000000000001
|
449 |
+
- type: precision_at_1000
|
450 |
+
value: 0.1
|
451 |
+
- type: precision_at_3
|
452 |
+
value: 24.2
|
453 |
+
- type: precision_at_5
|
454 |
+
value: 16.02
|
455 |
+
- type: recall_at_1
|
456 |
+
value: 54.800000000000004
|
457 |
+
- type: recall_at_10
|
458 |
+
value: 87.9
|
459 |
+
- type: recall_at_100
|
460 |
+
value: 98.6
|
461 |
+
- type: recall_at_1000
|
462 |
+
value: 99.8
|
463 |
+
- type: recall_at_3
|
464 |
+
value: 72.6
|
465 |
+
- type: recall_at_5
|
466 |
+
value: 80.10000000000001
|
467 |
+
- task:
|
468 |
+
type: Classification
|
469 |
+
dataset:
|
470 |
+
name: MTEB IFlyTek
|
471 |
+
type: C-MTEB/IFlyTek-classification
|
472 |
+
config: default
|
473 |
+
split: validation
|
474 |
+
revision: None
|
475 |
+
metrics:
|
476 |
+
- type: accuracy
|
477 |
+
value: 51.94305502116199
|
478 |
+
- type: f1
|
479 |
+
value: 39.82197338426721
|
480 |
+
- task:
|
481 |
+
type: Classification
|
482 |
+
dataset:
|
483 |
+
name: MTEB JDReview
|
484 |
+
type: C-MTEB/JDReview-classification
|
485 |
+
config: default
|
486 |
+
split: test
|
487 |
+
revision: None
|
488 |
+
metrics:
|
489 |
+
- type: accuracy
|
490 |
+
value: 90.31894934333957
|
491 |
+
- type: ap
|
492 |
+
value: 63.89821836499594
|
493 |
+
- type: f1
|
494 |
+
value: 85.93687177603624
|
495 |
+
- task:
|
496 |
+
type: STS
|
497 |
+
dataset:
|
498 |
+
name: MTEB LCQMC
|
499 |
+
type: C-MTEB/LCQMC
|
500 |
+
config: default
|
501 |
+
split: test
|
502 |
+
revision: None
|
503 |
+
metrics:
|
504 |
+
- type: cos_sim_pearson
|
505 |
+
value: 73.18906216730208
|
506 |
+
- type: cos_sim_spearman
|
507 |
+
value: 79.44570226735877
|
508 |
+
- type: euclidean_pearson
|
509 |
+
value: 78.8105072242798
|
510 |
+
- type: euclidean_spearman
|
511 |
+
value: 79.15605680863212
|
512 |
+
- type: manhattan_pearson
|
513 |
+
value: 78.80576507484064
|
514 |
+
- type: manhattan_spearman
|
515 |
+
value: 79.14625534068364
|
516 |
+
- task:
|
517 |
+
type: Reranking
|
518 |
+
dataset:
|
519 |
+
name: MTEB MMarcoReranking
|
520 |
+
type: C-MTEB/Mmarco-reranking
|
521 |
+
config: default
|
522 |
+
split: dev
|
523 |
+
revision: None
|
524 |
+
metrics:
|
525 |
+
- type: map
|
526 |
+
value: 41.58107192600853
|
527 |
+
- type: mrr
|
528 |
+
value: 41.37063492063492
|
529 |
+
- task:
|
530 |
+
type: Retrieval
|
531 |
+
dataset:
|
532 |
+
name: MTEB MMarcoRetrieval
|
533 |
+
type: C-MTEB/MMarcoRetrieval
|
534 |
+
config: default
|
535 |
+
split: dev
|
536 |
+
revision: None
|
537 |
+
metrics:
|
538 |
+
- type: map_at_1
|
539 |
+
value: 68.33
|
540 |
+
- type: map_at_10
|
541 |
+
value: 78.261
|
542 |
+
- type: map_at_100
|
543 |
+
value: 78.522
|
544 |
+
- type: map_at_1000
|
545 |
+
value: 78.527
|
546 |
+
- type: map_at_3
|
547 |
+
value: 76.236
|
548 |
+
- type: map_at_5
|
549 |
+
value: 77.557
|
550 |
+
- type: mrr_at_1
|
551 |
+
value: 70.602
|
552 |
+
- type: mrr_at_10
|
553 |
+
value: 78.779
|
554 |
+
- type: mrr_at_100
|
555 |
+
value: 79.00500000000001
|
556 |
+
- type: mrr_at_1000
|
557 |
+
value: 79.01
|
558 |
+
- type: mrr_at_3
|
559 |
+
value: 77.037
|
560 |
+
- type: mrr_at_5
|
561 |
+
value: 78.157
|
562 |
+
- type: ndcg_at_1
|
563 |
+
value: 70.602
|
564 |
+
- type: ndcg_at_10
|
565 |
+
value: 82.254
|
566 |
+
- type: ndcg_at_100
|
567 |
+
value: 83.319
|
568 |
+
- type: ndcg_at_1000
|
569 |
+
value: 83.449
|
570 |
+
- type: ndcg_at_3
|
571 |
+
value: 78.46
|
572 |
+
- type: ndcg_at_5
|
573 |
+
value: 80.679
|
574 |
+
- type: precision_at_1
|
575 |
+
value: 70.602
|
576 |
+
- type: precision_at_10
|
577 |
+
value: 9.989
|
578 |
+
- type: precision_at_100
|
579 |
+
value: 1.05
|
580 |
+
- type: precision_at_1000
|
581 |
+
value: 0.106
|
582 |
+
- type: precision_at_3
|
583 |
+
value: 29.598999999999997
|
584 |
+
- type: precision_at_5
|
585 |
+
value: 18.948
|
586 |
+
- type: recall_at_1
|
587 |
+
value: 68.33
|
588 |
+
- type: recall_at_10
|
589 |
+
value: 94.00800000000001
|
590 |
+
- type: recall_at_100
|
591 |
+
value: 98.589
|
592 |
+
- type: recall_at_1000
|
593 |
+
value: 99.60799999999999
|
594 |
+
- type: recall_at_3
|
595 |
+
value: 84.057
|
596 |
+
- type: recall_at_5
|
597 |
+
value: 89.32900000000001
|
598 |
+
- task:
|
599 |
+
type: Classification
|
600 |
+
dataset:
|
601 |
+
name: MTEB MassiveIntentClassification (zh-CN)
|
602 |
+
type: mteb/amazon_massive_intent
|
603 |
+
config: zh-CN
|
604 |
+
split: test
|
605 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
606 |
+
metrics:
|
607 |
+
- type: accuracy
|
608 |
+
value: 78.13718897108272
|
609 |
+
- type: f1
|
610 |
+
value: 74.07613180855328
|
611 |
+
- task:
|
612 |
+
type: Classification
|
613 |
+
dataset:
|
614 |
+
name: MTEB MassiveScenarioClassification (zh-CN)
|
615 |
+
type: mteb/amazon_massive_scenario
|
616 |
+
config: zh-CN
|
617 |
+
split: test
|
618 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
619 |
+
metrics:
|
620 |
+
- type: accuracy
|
621 |
+
value: 86.20040349697376
|
622 |
+
- type: f1
|
623 |
+
value: 85.05282136519973
|
624 |
+
- task:
|
625 |
+
type: Retrieval
|
626 |
+
dataset:
|
627 |
+
name: MTEB MedicalRetrieval
|
628 |
+
type: C-MTEB/MedicalRetrieval
|
629 |
+
config: default
|
630 |
+
split: dev
|
631 |
+
revision: None
|
632 |
+
metrics:
|
633 |
+
- type: map_at_1
|
634 |
+
value: 56.8
|
635 |
+
- type: map_at_10
|
636 |
+
value: 64.199
|
637 |
+
- type: map_at_100
|
638 |
+
value: 64.89
|
639 |
+
- type: map_at_1000
|
640 |
+
value: 64.917
|
641 |
+
- type: map_at_3
|
642 |
+
value: 62.383
|
643 |
+
- type: map_at_5
|
644 |
+
value: 63.378
|
645 |
+
- type: mrr_at_1
|
646 |
+
value: 56.8
|
647 |
+
- type: mrr_at_10
|
648 |
+
value: 64.199
|
649 |
+
- type: mrr_at_100
|
650 |
+
value: 64.89
|
651 |
+
- type: mrr_at_1000
|
652 |
+
value: 64.917
|
653 |
+
- type: mrr_at_3
|
654 |
+
value: 62.383
|
655 |
+
- type: mrr_at_5
|
656 |
+
value: 63.378
|
657 |
+
- type: ndcg_at_1
|
658 |
+
value: 56.8
|
659 |
+
- type: ndcg_at_10
|
660 |
+
value: 67.944
|
661 |
+
- type: ndcg_at_100
|
662 |
+
value: 71.286
|
663 |
+
- type: ndcg_at_1000
|
664 |
+
value: 71.879
|
665 |
+
- type: ndcg_at_3
|
666 |
+
value: 64.163
|
667 |
+
- type: ndcg_at_5
|
668 |
+
value: 65.96600000000001
|
669 |
+
- type: precision_at_1
|
670 |
+
value: 56.8
|
671 |
+
- type: precision_at_10
|
672 |
+
value: 7.9799999999999995
|
673 |
+
- type: precision_at_100
|
674 |
+
value: 0.954
|
675 |
+
- type: precision_at_1000
|
676 |
+
value: 0.1
|
677 |
+
- type: precision_at_3
|
678 |
+
value: 23.1
|
679 |
+
- type: precision_at_5
|
680 |
+
value: 14.74
|
681 |
+
- type: recall_at_1
|
682 |
+
value: 56.8
|
683 |
+
- type: recall_at_10
|
684 |
+
value: 79.80000000000001
|
685 |
+
- type: recall_at_100
|
686 |
+
value: 95.39999999999999
|
687 |
+
- type: recall_at_1000
|
688 |
+
value: 99.8
|
689 |
+
- type: recall_at_3
|
690 |
+
value: 69.3
|
691 |
+
- type: recall_at_5
|
692 |
+
value: 73.7
|
693 |
+
- task:
|
694 |
+
type: Classification
|
695 |
+
dataset:
|
696 |
+
name: MTEB MultilingualSentiment
|
697 |
+
type: C-MTEB/MultilingualSentiment-classification
|
698 |
+
config: default
|
699 |
+
split: validation
|
700 |
+
revision: None
|
701 |
+
metrics:
|
702 |
+
- type: accuracy
|
703 |
+
value: 78.57666666666667
|
704 |
+
- type: f1
|
705 |
+
value: 78.23373528202681
|
706 |
+
- task:
|
707 |
+
type: PairClassification
|
708 |
+
dataset:
|
709 |
+
name: MTEB Ocnli
|
710 |
+
type: C-MTEB/OCNLI
|
711 |
+
config: default
|
712 |
+
split: validation
|
713 |
+
revision: None
|
714 |
+
metrics:
|
715 |
+
- type: cos_sim_accuracy
|
716 |
+
value: 85.43584190579317
|
717 |
+
- type: cos_sim_ap
|
718 |
+
value: 90.76665640338129
|
719 |
+
- type: cos_sim_f1
|
720 |
+
value: 86.5021770682148
|
721 |
+
- type: cos_sim_precision
|
722 |
+
value: 79.82142857142858
|
723 |
+
- type: cos_sim_recall
|
724 |
+
value: 94.40337909186906
|
725 |
+
- type: dot_accuracy
|
726 |
+
value: 78.66811044937737
|
727 |
+
- type: dot_ap
|
728 |
+
value: 85.84084363880804
|
729 |
+
- type: dot_f1
|
730 |
+
value: 80.10075566750629
|
731 |
+
- type: dot_precision
|
732 |
+
value: 76.58959537572254
|
733 |
+
- type: dot_recall
|
734 |
+
value: 83.9493136219641
|
735 |
+
- type: euclidean_accuracy
|
736 |
+
value: 84.46128857606931
|
737 |
+
- type: euclidean_ap
|
738 |
+
value: 88.62351100230491
|
739 |
+
- type: euclidean_f1
|
740 |
+
value: 85.7709469509172
|
741 |
+
- type: euclidean_precision
|
742 |
+
value: 80.8411214953271
|
743 |
+
- type: euclidean_recall
|
744 |
+
value: 91.34107708553326
|
745 |
+
- type: manhattan_accuracy
|
746 |
+
value: 84.51543042772063
|
747 |
+
- type: manhattan_ap
|
748 |
+
value: 88.53975607870393
|
749 |
+
- type: manhattan_f1
|
750 |
+
value: 85.75697211155378
|
751 |
+
- type: manhattan_precision
|
752 |
+
value: 81.14985862393968
|
753 |
+
- type: manhattan_recall
|
754 |
+
value: 90.91869060190075
|
755 |
+
- type: max_accuracy
|
756 |
+
value: 85.43584190579317
|
757 |
+
- type: max_ap
|
758 |
+
value: 90.76665640338129
|
759 |
+
- type: max_f1
|
760 |
+
value: 86.5021770682148
|
761 |
+
- task:
|
762 |
+
type: Classification
|
763 |
+
dataset:
|
764 |
+
name: MTEB OnlineShopping
|
765 |
+
type: C-MTEB/OnlineShopping-classification
|
766 |
+
config: default
|
767 |
+
split: test
|
768 |
+
revision: None
|
769 |
+
metrics:
|
770 |
+
- type: accuracy
|
771 |
+
value: 95.06999999999998
|
772 |
+
- type: ap
|
773 |
+
value: 93.45104559324996
|
774 |
+
- type: f1
|
775 |
+
value: 95.06036329426092
|
776 |
+
- task:
|
777 |
+
type: STS
|
778 |
+
dataset:
|
779 |
+
name: MTEB PAWSX
|
780 |
+
type: C-MTEB/PAWSX
|
781 |
+
config: default
|
782 |
+
split: test
|
783 |
+
revision: None
|
784 |
+
metrics:
|
785 |
+
- type: cos_sim_pearson
|
786 |
+
value: 40.01998290519605
|
787 |
+
- type: cos_sim_spearman
|
788 |
+
value: 46.5989769986853
|
789 |
+
- type: euclidean_pearson
|
790 |
+
value: 45.37905883182924
|
791 |
+
- type: euclidean_spearman
|
792 |
+
value: 46.22213849806378
|
793 |
+
- type: manhattan_pearson
|
794 |
+
value: 45.40925124776211
|
795 |
+
- type: manhattan_spearman
|
796 |
+
value: 46.250705124226386
|
797 |
+
- task:
|
798 |
+
type: STS
|
799 |
+
dataset:
|
800 |
+
name: MTEB QBQTC
|
801 |
+
type: C-MTEB/QBQTC
|
802 |
+
config: default
|
803 |
+
split: test
|
804 |
+
revision: None
|
805 |
+
metrics:
|
806 |
+
- type: cos_sim_pearson
|
807 |
+
value: 42.719516197112526
|
808 |
+
- type: cos_sim_spearman
|
809 |
+
value: 44.57507789581106
|
810 |
+
- type: euclidean_pearson
|
811 |
+
value: 35.73062264160721
|
812 |
+
- type: euclidean_spearman
|
813 |
+
value: 40.473523909913695
|
814 |
+
- type: manhattan_pearson
|
815 |
+
value: 35.69868964086357
|
816 |
+
- type: manhattan_spearman
|
817 |
+
value: 40.46349925372903
|
818 |
+
- task:
|
819 |
+
type: STS
|
820 |
+
dataset:
|
821 |
+
name: MTEB STS22 (zh)
|
822 |
+
type: mteb/sts22-crosslingual-sts
|
823 |
+
config: zh
|
824 |
+
split: test
|
825 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
826 |
+
metrics:
|
827 |
+
- type: cos_sim_pearson
|
828 |
+
value: 62.340118285801104
|
829 |
+
- type: cos_sim_spearman
|
830 |
+
value: 67.72781908620632
|
831 |
+
- type: euclidean_pearson
|
832 |
+
value: 63.161965746091596
|
833 |
+
- type: euclidean_spearman
|
834 |
+
value: 67.36825684340769
|
835 |
+
- type: manhattan_pearson
|
836 |
+
value: 63.089863788261425
|
837 |
+
- type: manhattan_spearman
|
838 |
+
value: 67.40868898995384
|
839 |
+
- task:
|
840 |
+
type: STS
|
841 |
+
dataset:
|
842 |
+
name: MTEB STSB
|
843 |
+
type: C-MTEB/STSB
|
844 |
+
config: default
|
845 |
+
split: test
|
846 |
+
revision: None
|
847 |
+
metrics:
|
848 |
+
- type: cos_sim_pearson
|
849 |
+
value: 79.1646360962365
|
850 |
+
- type: cos_sim_spearman
|
851 |
+
value: 81.24426700767087
|
852 |
+
- type: euclidean_pearson
|
853 |
+
value: 79.43826409936123
|
854 |
+
- type: euclidean_spearman
|
855 |
+
value: 79.71787965300125
|
856 |
+
- type: manhattan_pearson
|
857 |
+
value: 79.43377784961737
|
858 |
+
- type: manhattan_spearman
|
859 |
+
value: 79.69348376886967
|
860 |
+
- task:
|
861 |
+
type: Reranking
|
862 |
+
dataset:
|
863 |
+
name: MTEB T2Reranking
|
864 |
+
type: C-MTEB/T2Reranking
|
865 |
+
config: default
|
866 |
+
split: dev
|
867 |
+
revision: None
|
868 |
+
metrics:
|
869 |
+
- type: map
|
870 |
+
value: 68.35595092507496
|
871 |
+
- type: mrr
|
872 |
+
value: 79.00244892585788
|
873 |
+
- task:
|
874 |
+
type: Retrieval
|
875 |
+
dataset:
|
876 |
+
name: MTEB T2Retrieval
|
877 |
+
type: C-MTEB/T2Retrieval
|
878 |
+
config: default
|
879 |
+
split: dev
|
880 |
+
revision: None
|
881 |
+
metrics:
|
882 |
+
- type: map_at_1
|
883 |
+
value: 26.588
|
884 |
+
- type: map_at_10
|
885 |
+
value: 75.327
|
886 |
+
- type: map_at_100
|
887 |
+
value: 79.095
|
888 |
+
- type: map_at_1000
|
889 |
+
value: 79.163
|
890 |
+
- type: map_at_3
|
891 |
+
value: 52.637
|
892 |
+
- type: map_at_5
|
893 |
+
value: 64.802
|
894 |
+
- type: mrr_at_1
|
895 |
+
value: 88.103
|
896 |
+
- type: mrr_at_10
|
897 |
+
value: 91.29899999999999
|
898 |
+
- type: mrr_at_100
|
899 |
+
value: 91.408
|
900 |
+
- type: mrr_at_1000
|
901 |
+
value: 91.411
|
902 |
+
- type: mrr_at_3
|
903 |
+
value: 90.801
|
904 |
+
- type: mrr_at_5
|
905 |
+
value: 91.12700000000001
|
906 |
+
- type: ndcg_at_1
|
907 |
+
value: 88.103
|
908 |
+
- type: ndcg_at_10
|
909 |
+
value: 83.314
|
910 |
+
- type: ndcg_at_100
|
911 |
+
value: 87.201
|
912 |
+
- type: ndcg_at_1000
|
913 |
+
value: 87.83999999999999
|
914 |
+
- type: ndcg_at_3
|
915 |
+
value: 84.408
|
916 |
+
- type: ndcg_at_5
|
917 |
+
value: 83.078
|
918 |
+
- type: precision_at_1
|
919 |
+
value: 88.103
|
920 |
+
- type: precision_at_10
|
921 |
+
value: 41.638999999999996
|
922 |
+
- type: precision_at_100
|
923 |
+
value: 5.006
|
924 |
+
- type: precision_at_1000
|
925 |
+
value: 0.516
|
926 |
+
- type: precision_at_3
|
927 |
+
value: 73.942
|
928 |
+
- type: precision_at_5
|
929 |
+
value: 62.056
|
930 |
+
- type: recall_at_1
|
931 |
+
value: 26.588
|
932 |
+
- type: recall_at_10
|
933 |
+
value: 82.819
|
934 |
+
- type: recall_at_100
|
935 |
+
value: 95.334
|
936 |
+
- type: recall_at_1000
|
937 |
+
value: 98.51299999999999
|
938 |
+
- type: recall_at_3
|
939 |
+
value: 54.74
|
940 |
+
- type: recall_at_5
|
941 |
+
value: 68.864
|
942 |
+
- task:
|
943 |
+
type: Classification
|
944 |
+
dataset:
|
945 |
+
name: MTEB TNews
|
946 |
+
type: C-MTEB/TNews-classification
|
947 |
+
config: default
|
948 |
+
split: validation
|
949 |
+
revision: None
|
950 |
+
metrics:
|
951 |
+
- type: accuracy
|
952 |
+
value: 55.029
|
953 |
+
- type: f1
|
954 |
+
value: 53.043617905026764
|
955 |
+
- task:
|
956 |
+
type: Clustering
|
957 |
+
dataset:
|
958 |
+
name: MTEB ThuNewsClusteringP2P
|
959 |
+
type: C-MTEB/ThuNewsClusteringP2P
|
960 |
+
config: default
|
961 |
+
split: test
|
962 |
+
revision: None
|
963 |
+
metrics:
|
964 |
+
- type: v_measure
|
965 |
+
value: 77.83675116835911
|
966 |
+
- task:
|
967 |
+
type: Clustering
|
968 |
+
dataset:
|
969 |
+
name: MTEB ThuNewsClusteringS2S
|
970 |
+
type: C-MTEB/ThuNewsClusteringS2S
|
971 |
+
config: default
|
972 |
+
split: test
|
973 |
+
revision: None
|
974 |
+
metrics:
|
975 |
+
- type: v_measure
|
976 |
+
value: 74.19701455865277
|
977 |
+
- task:
|
978 |
+
type: Retrieval
|
979 |
+
dataset:
|
980 |
+
name: MTEB VideoRetrieval
|
981 |
+
type: C-MTEB/VideoRetrieval
|
982 |
+
config: default
|
983 |
+
split: dev
|
984 |
+
revision: None
|
985 |
+
metrics:
|
986 |
+
- type: map_at_1
|
987 |
+
value: 64.7
|
988 |
+
- type: map_at_10
|
989 |
+
value: 75.593
|
990 |
+
- type: map_at_100
|
991 |
+
value: 75.863
|
992 |
+
- type: map_at_1000
|
993 |
+
value: 75.863
|
994 |
+
- type: map_at_3
|
995 |
+
value: 73.63300000000001
|
996 |
+
- type: map_at_5
|
997 |
+
value: 74.923
|
998 |
+
- type: mrr_at_1
|
999 |
+
value: 64.7
|
1000 |
+
- type: mrr_at_10
|
1001 |
+
value: 75.593
|
1002 |
+
- type: mrr_at_100
|
1003 |
+
value: 75.863
|
1004 |
+
- type: mrr_at_1000
|
1005 |
+
value: 75.863
|
1006 |
+
- type: mrr_at_3
|
1007 |
+
value: 73.63300000000001
|
1008 |
+
- type: mrr_at_5
|
1009 |
+
value: 74.923
|
1010 |
+
- type: ndcg_at_1
|
1011 |
+
value: 64.7
|
1012 |
+
- type: ndcg_at_10
|
1013 |
+
value: 80.399
|
1014 |
+
- type: ndcg_at_100
|
1015 |
+
value: 81.517
|
1016 |
+
- type: ndcg_at_1000
|
1017 |
+
value: 81.517
|
1018 |
+
- type: ndcg_at_3
|
1019 |
+
value: 76.504
|
1020 |
+
- type: ndcg_at_5
|
1021 |
+
value: 78.79899999999999
|
1022 |
+
- type: precision_at_1
|
1023 |
+
value: 64.7
|
1024 |
+
- type: precision_at_10
|
1025 |
+
value: 9.520000000000001
|
1026 |
+
- type: precision_at_100
|
1027 |
+
value: 1
|
1028 |
+
- type: precision_at_1000
|
1029 |
+
value: 0.1
|
1030 |
+
- type: precision_at_3
|
1031 |
+
value: 28.266999999999996
|
1032 |
+
- type: precision_at_5
|
1033 |
+
value: 18.060000000000002
|
1034 |
+
- type: recall_at_1
|
1035 |
+
value: 64.7
|
1036 |
+
- type: recall_at_10
|
1037 |
+
value: 95.19999999999999
|
1038 |
+
- type: recall_at_100
|
1039 |
+
value: 100
|
1040 |
+
- type: recall_at_1000
|
1041 |
+
value: 100
|
1042 |
+
- type: recall_at_3
|
1043 |
+
value: 84.8
|
1044 |
+
- type: recall_at_5
|
1045 |
+
value: 90.3
|
1046 |
+
- task:
|
1047 |
+
type: Classification
|
1048 |
+
dataset:
|
1049 |
+
name: MTEB Waimai
|
1050 |
+
type: C-MTEB/waimai-classification
|
1051 |
+
config: default
|
1052 |
+
split: test
|
1053 |
+
revision: None
|
1054 |
+
metrics:
|
1055 |
+
- type: accuracy
|
1056 |
+
value: 89.69999999999999
|
1057 |
+
- type: ap
|
1058 |
+
value: 75.91371640164184
|
1059 |
+
- type: f1
|
1060 |
+
value: 88.34067777698694
|
1061 |
+
---
|
1062 |
+
|
1063 |
+
# lagoon999/Conan-embedding-v1-Q4_K_M-GGUF
|
1064 |
+
This model was converted to GGUF format from [`TencentBAC/Conan-embedding-v1`](https://huggingface.co/TencentBAC/Conan-embedding-v1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
|
1065 |
+
Refer to the [original model card](https://huggingface.co/TencentBAC/Conan-embedding-v1) for more details on the model.
|
1066 |
+
|
1067 |
+
## Use with llama.cpp
|
1068 |
+
Install llama.cpp through brew (works on Mac and Linux)
|
1069 |
+
|
1070 |
+
```bash
|
1071 |
+
brew install llama.cpp
|
1072 |
+
|
1073 |
+
```
|
1074 |
+
Invoke the llama.cpp server or the CLI.
|
1075 |
+
|
1076 |
+
### CLI:
|
1077 |
+
```bash
|
1078 |
+
llama-cli --hf-repo lagoon999/Conan-embedding-v1-Q4_K_M-GGUF --hf-file conan-embedding-v1-q4_k_m.gguf -p "The meaning to life and the universe is"
|
1079 |
+
```
|
1080 |
+
|
1081 |
+
### Server:
|
1082 |
+
```bash
|
1083 |
+
llama-server --hf-repo lagoon999/Conan-embedding-v1-Q4_K_M-GGUF --hf-file conan-embedding-v1-q4_k_m.gguf -c 2048
|
1084 |
+
```
|
1085 |
+
|
1086 |
+
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
|
1087 |
+
|
1088 |
+
Step 1: Clone llama.cpp from GitHub.
|
1089 |
+
```
|
1090 |
+
git clone https://github.com/ggerganov/llama.cpp
|
1091 |
+
```
|
1092 |
+
|
1093 |
+
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
|
1094 |
+
```
|
1095 |
+
cd llama.cpp && LLAMA_CURL=1 make
|
1096 |
+
```
|
1097 |
+
|
1098 |
+
Step 3: Run inference through the main binary.
|
1099 |
+
```
|
1100 |
+
./llama-cli --hf-repo lagoon999/Conan-embedding-v1-Q4_K_M-GGUF --hf-file conan-embedding-v1-q4_k_m.gguf -p "The meaning to life and the universe is"
|
1101 |
+
```
|
1102 |
+
or
|
1103 |
+
```
|
1104 |
+
./llama-server --hf-repo lagoon999/Conan-embedding-v1-Q4_K_M-GGUF --hf-file conan-embedding-v1-q4_k_m.gguf -c 2048
|
1105 |
+
```
|