lagoon999 commited on
Commit
06351ef
1 Parent(s): c847d81

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +1105 -0
README.md ADDED
@@ -0,0 +1,1105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - mteb
4
+ - llama-cpp
5
+ - gguf-my-repo
6
+ license: cc-by-nc-4.0
7
+ library_name: sentence-transformers
8
+ base_model: TencentBAC/Conan-embedding-v1
9
+ model-index:
10
+ - name: conan-embedding
11
+ results:
12
+ - task:
13
+ type: STS
14
+ dataset:
15
+ name: MTEB AFQMC
16
+ type: C-MTEB/AFQMC
17
+ config: default
18
+ split: validation
19
+ revision: None
20
+ metrics:
21
+ - type: cos_sim_pearson
22
+ value: 56.613572467148856
23
+ - type: cos_sim_spearman
24
+ value: 60.66446211824284
25
+ - type: euclidean_pearson
26
+ value: 58.42080485872613
27
+ - type: euclidean_spearman
28
+ value: 59.82750030458164
29
+ - type: manhattan_pearson
30
+ value: 58.39885271199772
31
+ - type: manhattan_spearman
32
+ value: 59.817749720366734
33
+ - task:
34
+ type: STS
35
+ dataset:
36
+ name: MTEB ATEC
37
+ type: C-MTEB/ATEC
38
+ config: default
39
+ split: test
40
+ revision: None
41
+ metrics:
42
+ - type: cos_sim_pearson
43
+ value: 56.60530380552331
44
+ - type: cos_sim_spearman
45
+ value: 58.63822441736707
46
+ - type: euclidean_pearson
47
+ value: 62.18551665180664
48
+ - type: euclidean_spearman
49
+ value: 58.23168804495912
50
+ - type: manhattan_pearson
51
+ value: 62.17191480770053
52
+ - type: manhattan_spearman
53
+ value: 58.22556219601401
54
+ - task:
55
+ type: Classification
56
+ dataset:
57
+ name: MTEB AmazonReviewsClassification (zh)
58
+ type: mteb/amazon_reviews_multi
59
+ config: zh
60
+ split: test
61
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
62
+ metrics:
63
+ - type: accuracy
64
+ value: 50.308
65
+ - type: f1
66
+ value: 46.927458607895126
67
+ - task:
68
+ type: STS
69
+ dataset:
70
+ name: MTEB BQ
71
+ type: C-MTEB/BQ
72
+ config: default
73
+ split: test
74
+ revision: None
75
+ metrics:
76
+ - type: cos_sim_pearson
77
+ value: 72.6472074172711
78
+ - type: cos_sim_spearman
79
+ value: 74.50748447236577
80
+ - type: euclidean_pearson
81
+ value: 72.51833296451854
82
+ - type: euclidean_spearman
83
+ value: 73.9898922606105
84
+ - type: manhattan_pearson
85
+ value: 72.50184948939338
86
+ - type: manhattan_spearman
87
+ value: 73.97797921509638
88
+ - task:
89
+ type: Clustering
90
+ dataset:
91
+ name: MTEB CLSClusteringP2P
92
+ type: C-MTEB/CLSClusteringP2P
93
+ config: default
94
+ split: test
95
+ revision: None
96
+ metrics:
97
+ - type: v_measure
98
+ value: 60.63545326048343
99
+ - task:
100
+ type: Clustering
101
+ dataset:
102
+ name: MTEB CLSClusteringS2S
103
+ type: C-MTEB/CLSClusteringS2S
104
+ config: default
105
+ split: test
106
+ revision: None
107
+ metrics:
108
+ - type: v_measure
109
+ value: 52.64834762325994
110
+ - task:
111
+ type: Reranking
112
+ dataset:
113
+ name: MTEB CMedQAv1
114
+ type: C-MTEB/CMedQAv1-reranking
115
+ config: default
116
+ split: test
117
+ revision: None
118
+ metrics:
119
+ - type: map
120
+ value: 91.38528814655234
121
+ - type: mrr
122
+ value: 93.35857142857144
123
+ - task:
124
+ type: Reranking
125
+ dataset:
126
+ name: MTEB CMedQAv2
127
+ type: C-MTEB/CMedQAv2-reranking
128
+ config: default
129
+ split: test
130
+ revision: None
131
+ metrics:
132
+ - type: map
133
+ value: 89.72084678877096
134
+ - type: mrr
135
+ value: 91.74380952380953
136
+ - task:
137
+ type: Retrieval
138
+ dataset:
139
+ name: MTEB CmedqaRetrieval
140
+ type: C-MTEB/CmedqaRetrieval
141
+ config: default
142
+ split: dev
143
+ revision: None
144
+ metrics:
145
+ - type: map_at_1
146
+ value: 26.987
147
+ - type: map_at_10
148
+ value: 40.675
149
+ - type: map_at_100
150
+ value: 42.495
151
+ - type: map_at_1000
152
+ value: 42.596000000000004
153
+ - type: map_at_3
154
+ value: 36.195
155
+ - type: map_at_5
156
+ value: 38.704
157
+ - type: mrr_at_1
158
+ value: 41.21
159
+ - type: mrr_at_10
160
+ value: 49.816
161
+ - type: mrr_at_100
162
+ value: 50.743
163
+ - type: mrr_at_1000
164
+ value: 50.77700000000001
165
+ - type: mrr_at_3
166
+ value: 47.312
167
+ - type: mrr_at_5
168
+ value: 48.699999999999996
169
+ - type: ndcg_at_1
170
+ value: 41.21
171
+ - type: ndcg_at_10
172
+ value: 47.606
173
+ - type: ndcg_at_100
174
+ value: 54.457
175
+ - type: ndcg_at_1000
176
+ value: 56.16100000000001
177
+ - type: ndcg_at_3
178
+ value: 42.108000000000004
179
+ - type: ndcg_at_5
180
+ value: 44.393
181
+ - type: precision_at_1
182
+ value: 41.21
183
+ - type: precision_at_10
184
+ value: 10.593
185
+ - type: precision_at_100
186
+ value: 1.609
187
+ - type: precision_at_1000
188
+ value: 0.183
189
+ - type: precision_at_3
190
+ value: 23.881
191
+ - type: precision_at_5
192
+ value: 17.339
193
+ - type: recall_at_1
194
+ value: 26.987
195
+ - type: recall_at_10
196
+ value: 58.875
197
+ - type: recall_at_100
198
+ value: 87.023
199
+ - type: recall_at_1000
200
+ value: 98.328
201
+ - type: recall_at_3
202
+ value: 42.265
203
+ - type: recall_at_5
204
+ value: 49.334
205
+ - task:
206
+ type: PairClassification
207
+ dataset:
208
+ name: MTEB Cmnli
209
+ type: C-MTEB/CMNLI
210
+ config: default
211
+ split: validation
212
+ revision: None
213
+ metrics:
214
+ - type: cos_sim_accuracy
215
+ value: 85.91701743836441
216
+ - type: cos_sim_ap
217
+ value: 92.53650618807644
218
+ - type: cos_sim_f1
219
+ value: 86.80265975431082
220
+ - type: cos_sim_precision
221
+ value: 83.79025239338556
222
+ - type: cos_sim_recall
223
+ value: 90.039747486556
224
+ - type: dot_accuracy
225
+ value: 77.17378232110643
226
+ - type: dot_ap
227
+ value: 85.40244368166546
228
+ - type: dot_f1
229
+ value: 79.03038001481951
230
+ - type: dot_precision
231
+ value: 72.20502901353966
232
+ - type: dot_recall
233
+ value: 87.2808043020809
234
+ - type: euclidean_accuracy
235
+ value: 84.65423932651834
236
+ - type: euclidean_ap
237
+ value: 91.47775530034588
238
+ - type: euclidean_f1
239
+ value: 85.64471499723298
240
+ - type: euclidean_precision
241
+ value: 81.31567885666246
242
+ - type: euclidean_recall
243
+ value: 90.46060322656068
244
+ - type: manhattan_accuracy
245
+ value: 84.58208057726999
246
+ - type: manhattan_ap
247
+ value: 91.46228709402014
248
+ - type: manhattan_f1
249
+ value: 85.6631626034444
250
+ - type: manhattan_precision
251
+ value: 82.10075026795283
252
+ - type: manhattan_recall
253
+ value: 89.5487491232172
254
+ - type: max_accuracy
255
+ value: 85.91701743836441
256
+ - type: max_ap
257
+ value: 92.53650618807644
258
+ - type: max_f1
259
+ value: 86.80265975431082
260
+ - task:
261
+ type: Retrieval
262
+ dataset:
263
+ name: MTEB CovidRetrieval
264
+ type: C-MTEB/CovidRetrieval
265
+ config: default
266
+ split: dev
267
+ revision: None
268
+ metrics:
269
+ - type: map_at_1
270
+ value: 83.693
271
+ - type: map_at_10
272
+ value: 90.098
273
+ - type: map_at_100
274
+ value: 90.145
275
+ - type: map_at_1000
276
+ value: 90.146
277
+ - type: map_at_3
278
+ value: 89.445
279
+ - type: map_at_5
280
+ value: 89.935
281
+ - type: mrr_at_1
282
+ value: 83.878
283
+ - type: mrr_at_10
284
+ value: 90.007
285
+ - type: mrr_at_100
286
+ value: 90.045
287
+ - type: mrr_at_1000
288
+ value: 90.046
289
+ - type: mrr_at_3
290
+ value: 89.34
291
+ - type: mrr_at_5
292
+ value: 89.835
293
+ - type: ndcg_at_1
294
+ value: 84.089
295
+ - type: ndcg_at_10
296
+ value: 92.351
297
+ - type: ndcg_at_100
298
+ value: 92.54599999999999
299
+ - type: ndcg_at_1000
300
+ value: 92.561
301
+ - type: ndcg_at_3
302
+ value: 91.15299999999999
303
+ - type: ndcg_at_5
304
+ value: 91.968
305
+ - type: precision_at_1
306
+ value: 84.089
307
+ - type: precision_at_10
308
+ value: 10.011000000000001
309
+ - type: precision_at_100
310
+ value: 1.009
311
+ - type: precision_at_1000
312
+ value: 0.101
313
+ - type: precision_at_3
314
+ value: 32.28
315
+ - type: precision_at_5
316
+ value: 19.789
317
+ - type: recall_at_1
318
+ value: 83.693
319
+ - type: recall_at_10
320
+ value: 99.05199999999999
321
+ - type: recall_at_100
322
+ value: 99.895
323
+ - type: recall_at_1000
324
+ value: 100
325
+ - type: recall_at_3
326
+ value: 95.917
327
+ - type: recall_at_5
328
+ value: 97.893
329
+ - task:
330
+ type: Retrieval
331
+ dataset:
332
+ name: MTEB DuRetrieval
333
+ type: C-MTEB/DuRetrieval
334
+ config: default
335
+ split: dev
336
+ revision: None
337
+ metrics:
338
+ - type: map_at_1
339
+ value: 26.924
340
+ - type: map_at_10
341
+ value: 81.392
342
+ - type: map_at_100
343
+ value: 84.209
344
+ - type: map_at_1000
345
+ value: 84.237
346
+ - type: map_at_3
347
+ value: 56.998000000000005
348
+ - type: map_at_5
349
+ value: 71.40100000000001
350
+ - type: mrr_at_1
351
+ value: 91.75
352
+ - type: mrr_at_10
353
+ value: 94.45
354
+ - type: mrr_at_100
355
+ value: 94.503
356
+ - type: mrr_at_1000
357
+ value: 94.505
358
+ - type: mrr_at_3
359
+ value: 94.258
360
+ - type: mrr_at_5
361
+ value: 94.381
362
+ - type: ndcg_at_1
363
+ value: 91.75
364
+ - type: ndcg_at_10
365
+ value: 88.53
366
+ - type: ndcg_at_100
367
+ value: 91.13900000000001
368
+ - type: ndcg_at_1000
369
+ value: 91.387
370
+ - type: ndcg_at_3
371
+ value: 87.925
372
+ - type: ndcg_at_5
373
+ value: 86.461
374
+ - type: precision_at_1
375
+ value: 91.75
376
+ - type: precision_at_10
377
+ value: 42.05
378
+ - type: precision_at_100
379
+ value: 4.827
380
+ - type: precision_at_1000
381
+ value: 0.48900000000000005
382
+ - type: precision_at_3
383
+ value: 78.55
384
+ - type: precision_at_5
385
+ value: 65.82000000000001
386
+ - type: recall_at_1
387
+ value: 26.924
388
+ - type: recall_at_10
389
+ value: 89.338
390
+ - type: recall_at_100
391
+ value: 97.856
392
+ - type: recall_at_1000
393
+ value: 99.11
394
+ - type: recall_at_3
395
+ value: 59.202999999999996
396
+ - type: recall_at_5
397
+ value: 75.642
398
+ - task:
399
+ type: Retrieval
400
+ dataset:
401
+ name: MTEB EcomRetrieval
402
+ type: C-MTEB/EcomRetrieval
403
+ config: default
404
+ split: dev
405
+ revision: None
406
+ metrics:
407
+ - type: map_at_1
408
+ value: 54.800000000000004
409
+ - type: map_at_10
410
+ value: 65.613
411
+ - type: map_at_100
412
+ value: 66.185
413
+ - type: map_at_1000
414
+ value: 66.191
415
+ - type: map_at_3
416
+ value: 62.8
417
+ - type: map_at_5
418
+ value: 64.535
419
+ - type: mrr_at_1
420
+ value: 54.800000000000004
421
+ - type: mrr_at_10
422
+ value: 65.613
423
+ - type: mrr_at_100
424
+ value: 66.185
425
+ - type: mrr_at_1000
426
+ value: 66.191
427
+ - type: mrr_at_3
428
+ value: 62.8
429
+ - type: mrr_at_5
430
+ value: 64.535
431
+ - type: ndcg_at_1
432
+ value: 54.800000000000004
433
+ - type: ndcg_at_10
434
+ value: 70.991
435
+ - type: ndcg_at_100
436
+ value: 73.434
437
+ - type: ndcg_at_1000
438
+ value: 73.587
439
+ - type: ndcg_at_3
440
+ value: 65.324
441
+ - type: ndcg_at_5
442
+ value: 68.431
443
+ - type: precision_at_1
444
+ value: 54.800000000000004
445
+ - type: precision_at_10
446
+ value: 8.790000000000001
447
+ - type: precision_at_100
448
+ value: 0.9860000000000001
449
+ - type: precision_at_1000
450
+ value: 0.1
451
+ - type: precision_at_3
452
+ value: 24.2
453
+ - type: precision_at_5
454
+ value: 16.02
455
+ - type: recall_at_1
456
+ value: 54.800000000000004
457
+ - type: recall_at_10
458
+ value: 87.9
459
+ - type: recall_at_100
460
+ value: 98.6
461
+ - type: recall_at_1000
462
+ value: 99.8
463
+ - type: recall_at_3
464
+ value: 72.6
465
+ - type: recall_at_5
466
+ value: 80.10000000000001
467
+ - task:
468
+ type: Classification
469
+ dataset:
470
+ name: MTEB IFlyTek
471
+ type: C-MTEB/IFlyTek-classification
472
+ config: default
473
+ split: validation
474
+ revision: None
475
+ metrics:
476
+ - type: accuracy
477
+ value: 51.94305502116199
478
+ - type: f1
479
+ value: 39.82197338426721
480
+ - task:
481
+ type: Classification
482
+ dataset:
483
+ name: MTEB JDReview
484
+ type: C-MTEB/JDReview-classification
485
+ config: default
486
+ split: test
487
+ revision: None
488
+ metrics:
489
+ - type: accuracy
490
+ value: 90.31894934333957
491
+ - type: ap
492
+ value: 63.89821836499594
493
+ - type: f1
494
+ value: 85.93687177603624
495
+ - task:
496
+ type: STS
497
+ dataset:
498
+ name: MTEB LCQMC
499
+ type: C-MTEB/LCQMC
500
+ config: default
501
+ split: test
502
+ revision: None
503
+ metrics:
504
+ - type: cos_sim_pearson
505
+ value: 73.18906216730208
506
+ - type: cos_sim_spearman
507
+ value: 79.44570226735877
508
+ - type: euclidean_pearson
509
+ value: 78.8105072242798
510
+ - type: euclidean_spearman
511
+ value: 79.15605680863212
512
+ - type: manhattan_pearson
513
+ value: 78.80576507484064
514
+ - type: manhattan_spearman
515
+ value: 79.14625534068364
516
+ - task:
517
+ type: Reranking
518
+ dataset:
519
+ name: MTEB MMarcoReranking
520
+ type: C-MTEB/Mmarco-reranking
521
+ config: default
522
+ split: dev
523
+ revision: None
524
+ metrics:
525
+ - type: map
526
+ value: 41.58107192600853
527
+ - type: mrr
528
+ value: 41.37063492063492
529
+ - task:
530
+ type: Retrieval
531
+ dataset:
532
+ name: MTEB MMarcoRetrieval
533
+ type: C-MTEB/MMarcoRetrieval
534
+ config: default
535
+ split: dev
536
+ revision: None
537
+ metrics:
538
+ - type: map_at_1
539
+ value: 68.33
540
+ - type: map_at_10
541
+ value: 78.261
542
+ - type: map_at_100
543
+ value: 78.522
544
+ - type: map_at_1000
545
+ value: 78.527
546
+ - type: map_at_3
547
+ value: 76.236
548
+ - type: map_at_5
549
+ value: 77.557
550
+ - type: mrr_at_1
551
+ value: 70.602
552
+ - type: mrr_at_10
553
+ value: 78.779
554
+ - type: mrr_at_100
555
+ value: 79.00500000000001
556
+ - type: mrr_at_1000
557
+ value: 79.01
558
+ - type: mrr_at_3
559
+ value: 77.037
560
+ - type: mrr_at_5
561
+ value: 78.157
562
+ - type: ndcg_at_1
563
+ value: 70.602
564
+ - type: ndcg_at_10
565
+ value: 82.254
566
+ - type: ndcg_at_100
567
+ value: 83.319
568
+ - type: ndcg_at_1000
569
+ value: 83.449
570
+ - type: ndcg_at_3
571
+ value: 78.46
572
+ - type: ndcg_at_5
573
+ value: 80.679
574
+ - type: precision_at_1
575
+ value: 70.602
576
+ - type: precision_at_10
577
+ value: 9.989
578
+ - type: precision_at_100
579
+ value: 1.05
580
+ - type: precision_at_1000
581
+ value: 0.106
582
+ - type: precision_at_3
583
+ value: 29.598999999999997
584
+ - type: precision_at_5
585
+ value: 18.948
586
+ - type: recall_at_1
587
+ value: 68.33
588
+ - type: recall_at_10
589
+ value: 94.00800000000001
590
+ - type: recall_at_100
591
+ value: 98.589
592
+ - type: recall_at_1000
593
+ value: 99.60799999999999
594
+ - type: recall_at_3
595
+ value: 84.057
596
+ - type: recall_at_5
597
+ value: 89.32900000000001
598
+ - task:
599
+ type: Classification
600
+ dataset:
601
+ name: MTEB MassiveIntentClassification (zh-CN)
602
+ type: mteb/amazon_massive_intent
603
+ config: zh-CN
604
+ split: test
605
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
606
+ metrics:
607
+ - type: accuracy
608
+ value: 78.13718897108272
609
+ - type: f1
610
+ value: 74.07613180855328
611
+ - task:
612
+ type: Classification
613
+ dataset:
614
+ name: MTEB MassiveScenarioClassification (zh-CN)
615
+ type: mteb/amazon_massive_scenario
616
+ config: zh-CN
617
+ split: test
618
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
619
+ metrics:
620
+ - type: accuracy
621
+ value: 86.20040349697376
622
+ - type: f1
623
+ value: 85.05282136519973
624
+ - task:
625
+ type: Retrieval
626
+ dataset:
627
+ name: MTEB MedicalRetrieval
628
+ type: C-MTEB/MedicalRetrieval
629
+ config: default
630
+ split: dev
631
+ revision: None
632
+ metrics:
633
+ - type: map_at_1
634
+ value: 56.8
635
+ - type: map_at_10
636
+ value: 64.199
637
+ - type: map_at_100
638
+ value: 64.89
639
+ - type: map_at_1000
640
+ value: 64.917
641
+ - type: map_at_3
642
+ value: 62.383
643
+ - type: map_at_5
644
+ value: 63.378
645
+ - type: mrr_at_1
646
+ value: 56.8
647
+ - type: mrr_at_10
648
+ value: 64.199
649
+ - type: mrr_at_100
650
+ value: 64.89
651
+ - type: mrr_at_1000
652
+ value: 64.917
653
+ - type: mrr_at_3
654
+ value: 62.383
655
+ - type: mrr_at_5
656
+ value: 63.378
657
+ - type: ndcg_at_1
658
+ value: 56.8
659
+ - type: ndcg_at_10
660
+ value: 67.944
661
+ - type: ndcg_at_100
662
+ value: 71.286
663
+ - type: ndcg_at_1000
664
+ value: 71.879
665
+ - type: ndcg_at_3
666
+ value: 64.163
667
+ - type: ndcg_at_5
668
+ value: 65.96600000000001
669
+ - type: precision_at_1
670
+ value: 56.8
671
+ - type: precision_at_10
672
+ value: 7.9799999999999995
673
+ - type: precision_at_100
674
+ value: 0.954
675
+ - type: precision_at_1000
676
+ value: 0.1
677
+ - type: precision_at_3
678
+ value: 23.1
679
+ - type: precision_at_5
680
+ value: 14.74
681
+ - type: recall_at_1
682
+ value: 56.8
683
+ - type: recall_at_10
684
+ value: 79.80000000000001
685
+ - type: recall_at_100
686
+ value: 95.39999999999999
687
+ - type: recall_at_1000
688
+ value: 99.8
689
+ - type: recall_at_3
690
+ value: 69.3
691
+ - type: recall_at_5
692
+ value: 73.7
693
+ - task:
694
+ type: Classification
695
+ dataset:
696
+ name: MTEB MultilingualSentiment
697
+ type: C-MTEB/MultilingualSentiment-classification
698
+ config: default
699
+ split: validation
700
+ revision: None
701
+ metrics:
702
+ - type: accuracy
703
+ value: 78.57666666666667
704
+ - type: f1
705
+ value: 78.23373528202681
706
+ - task:
707
+ type: PairClassification
708
+ dataset:
709
+ name: MTEB Ocnli
710
+ type: C-MTEB/OCNLI
711
+ config: default
712
+ split: validation
713
+ revision: None
714
+ metrics:
715
+ - type: cos_sim_accuracy
716
+ value: 85.43584190579317
717
+ - type: cos_sim_ap
718
+ value: 90.76665640338129
719
+ - type: cos_sim_f1
720
+ value: 86.5021770682148
721
+ - type: cos_sim_precision
722
+ value: 79.82142857142858
723
+ - type: cos_sim_recall
724
+ value: 94.40337909186906
725
+ - type: dot_accuracy
726
+ value: 78.66811044937737
727
+ - type: dot_ap
728
+ value: 85.84084363880804
729
+ - type: dot_f1
730
+ value: 80.10075566750629
731
+ - type: dot_precision
732
+ value: 76.58959537572254
733
+ - type: dot_recall
734
+ value: 83.9493136219641
735
+ - type: euclidean_accuracy
736
+ value: 84.46128857606931
737
+ - type: euclidean_ap
738
+ value: 88.62351100230491
739
+ - type: euclidean_f1
740
+ value: 85.7709469509172
741
+ - type: euclidean_precision
742
+ value: 80.8411214953271
743
+ - type: euclidean_recall
744
+ value: 91.34107708553326
745
+ - type: manhattan_accuracy
746
+ value: 84.51543042772063
747
+ - type: manhattan_ap
748
+ value: 88.53975607870393
749
+ - type: manhattan_f1
750
+ value: 85.75697211155378
751
+ - type: manhattan_precision
752
+ value: 81.14985862393968
753
+ - type: manhattan_recall
754
+ value: 90.91869060190075
755
+ - type: max_accuracy
756
+ value: 85.43584190579317
757
+ - type: max_ap
758
+ value: 90.76665640338129
759
+ - type: max_f1
760
+ value: 86.5021770682148
761
+ - task:
762
+ type: Classification
763
+ dataset:
764
+ name: MTEB OnlineShopping
765
+ type: C-MTEB/OnlineShopping-classification
766
+ config: default
767
+ split: test
768
+ revision: None
769
+ metrics:
770
+ - type: accuracy
771
+ value: 95.06999999999998
772
+ - type: ap
773
+ value: 93.45104559324996
774
+ - type: f1
775
+ value: 95.06036329426092
776
+ - task:
777
+ type: STS
778
+ dataset:
779
+ name: MTEB PAWSX
780
+ type: C-MTEB/PAWSX
781
+ config: default
782
+ split: test
783
+ revision: None
784
+ metrics:
785
+ - type: cos_sim_pearson
786
+ value: 40.01998290519605
787
+ - type: cos_sim_spearman
788
+ value: 46.5989769986853
789
+ - type: euclidean_pearson
790
+ value: 45.37905883182924
791
+ - type: euclidean_spearman
792
+ value: 46.22213849806378
793
+ - type: manhattan_pearson
794
+ value: 45.40925124776211
795
+ - type: manhattan_spearman
796
+ value: 46.250705124226386
797
+ - task:
798
+ type: STS
799
+ dataset:
800
+ name: MTEB QBQTC
801
+ type: C-MTEB/QBQTC
802
+ config: default
803
+ split: test
804
+ revision: None
805
+ metrics:
806
+ - type: cos_sim_pearson
807
+ value: 42.719516197112526
808
+ - type: cos_sim_spearman
809
+ value: 44.57507789581106
810
+ - type: euclidean_pearson
811
+ value: 35.73062264160721
812
+ - type: euclidean_spearman
813
+ value: 40.473523909913695
814
+ - type: manhattan_pearson
815
+ value: 35.69868964086357
816
+ - type: manhattan_spearman
817
+ value: 40.46349925372903
818
+ - task:
819
+ type: STS
820
+ dataset:
821
+ name: MTEB STS22 (zh)
822
+ type: mteb/sts22-crosslingual-sts
823
+ config: zh
824
+ split: test
825
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
826
+ metrics:
827
+ - type: cos_sim_pearson
828
+ value: 62.340118285801104
829
+ - type: cos_sim_spearman
830
+ value: 67.72781908620632
831
+ - type: euclidean_pearson
832
+ value: 63.161965746091596
833
+ - type: euclidean_spearman
834
+ value: 67.36825684340769
835
+ - type: manhattan_pearson
836
+ value: 63.089863788261425
837
+ - type: manhattan_spearman
838
+ value: 67.40868898995384
839
+ - task:
840
+ type: STS
841
+ dataset:
842
+ name: MTEB STSB
843
+ type: C-MTEB/STSB
844
+ config: default
845
+ split: test
846
+ revision: None
847
+ metrics:
848
+ - type: cos_sim_pearson
849
+ value: 79.1646360962365
850
+ - type: cos_sim_spearman
851
+ value: 81.24426700767087
852
+ - type: euclidean_pearson
853
+ value: 79.43826409936123
854
+ - type: euclidean_spearman
855
+ value: 79.71787965300125
856
+ - type: manhattan_pearson
857
+ value: 79.43377784961737
858
+ - type: manhattan_spearman
859
+ value: 79.69348376886967
860
+ - task:
861
+ type: Reranking
862
+ dataset:
863
+ name: MTEB T2Reranking
864
+ type: C-MTEB/T2Reranking
865
+ config: default
866
+ split: dev
867
+ revision: None
868
+ metrics:
869
+ - type: map
870
+ value: 68.35595092507496
871
+ - type: mrr
872
+ value: 79.00244892585788
873
+ - task:
874
+ type: Retrieval
875
+ dataset:
876
+ name: MTEB T2Retrieval
877
+ type: C-MTEB/T2Retrieval
878
+ config: default
879
+ split: dev
880
+ revision: None
881
+ metrics:
882
+ - type: map_at_1
883
+ value: 26.588
884
+ - type: map_at_10
885
+ value: 75.327
886
+ - type: map_at_100
887
+ value: 79.095
888
+ - type: map_at_1000
889
+ value: 79.163
890
+ - type: map_at_3
891
+ value: 52.637
892
+ - type: map_at_5
893
+ value: 64.802
894
+ - type: mrr_at_1
895
+ value: 88.103
896
+ - type: mrr_at_10
897
+ value: 91.29899999999999
898
+ - type: mrr_at_100
899
+ value: 91.408
900
+ - type: mrr_at_1000
901
+ value: 91.411
902
+ - type: mrr_at_3
903
+ value: 90.801
904
+ - type: mrr_at_5
905
+ value: 91.12700000000001
906
+ - type: ndcg_at_1
907
+ value: 88.103
908
+ - type: ndcg_at_10
909
+ value: 83.314
910
+ - type: ndcg_at_100
911
+ value: 87.201
912
+ - type: ndcg_at_1000
913
+ value: 87.83999999999999
914
+ - type: ndcg_at_3
915
+ value: 84.408
916
+ - type: ndcg_at_5
917
+ value: 83.078
918
+ - type: precision_at_1
919
+ value: 88.103
920
+ - type: precision_at_10
921
+ value: 41.638999999999996
922
+ - type: precision_at_100
923
+ value: 5.006
924
+ - type: precision_at_1000
925
+ value: 0.516
926
+ - type: precision_at_3
927
+ value: 73.942
928
+ - type: precision_at_5
929
+ value: 62.056
930
+ - type: recall_at_1
931
+ value: 26.588
932
+ - type: recall_at_10
933
+ value: 82.819
934
+ - type: recall_at_100
935
+ value: 95.334
936
+ - type: recall_at_1000
937
+ value: 98.51299999999999
938
+ - type: recall_at_3
939
+ value: 54.74
940
+ - type: recall_at_5
941
+ value: 68.864
942
+ - task:
943
+ type: Classification
944
+ dataset:
945
+ name: MTEB TNews
946
+ type: C-MTEB/TNews-classification
947
+ config: default
948
+ split: validation
949
+ revision: None
950
+ metrics:
951
+ - type: accuracy
952
+ value: 55.029
953
+ - type: f1
954
+ value: 53.043617905026764
955
+ - task:
956
+ type: Clustering
957
+ dataset:
958
+ name: MTEB ThuNewsClusteringP2P
959
+ type: C-MTEB/ThuNewsClusteringP2P
960
+ config: default
961
+ split: test
962
+ revision: None
963
+ metrics:
964
+ - type: v_measure
965
+ value: 77.83675116835911
966
+ - task:
967
+ type: Clustering
968
+ dataset:
969
+ name: MTEB ThuNewsClusteringS2S
970
+ type: C-MTEB/ThuNewsClusteringS2S
971
+ config: default
972
+ split: test
973
+ revision: None
974
+ metrics:
975
+ - type: v_measure
976
+ value: 74.19701455865277
977
+ - task:
978
+ type: Retrieval
979
+ dataset:
980
+ name: MTEB VideoRetrieval
981
+ type: C-MTEB/VideoRetrieval
982
+ config: default
983
+ split: dev
984
+ revision: None
985
+ metrics:
986
+ - type: map_at_1
987
+ value: 64.7
988
+ - type: map_at_10
989
+ value: 75.593
990
+ - type: map_at_100
991
+ value: 75.863
992
+ - type: map_at_1000
993
+ value: 75.863
994
+ - type: map_at_3
995
+ value: 73.63300000000001
996
+ - type: map_at_5
997
+ value: 74.923
998
+ - type: mrr_at_1
999
+ value: 64.7
1000
+ - type: mrr_at_10
1001
+ value: 75.593
1002
+ - type: mrr_at_100
1003
+ value: 75.863
1004
+ - type: mrr_at_1000
1005
+ value: 75.863
1006
+ - type: mrr_at_3
1007
+ value: 73.63300000000001
1008
+ - type: mrr_at_5
1009
+ value: 74.923
1010
+ - type: ndcg_at_1
1011
+ value: 64.7
1012
+ - type: ndcg_at_10
1013
+ value: 80.399
1014
+ - type: ndcg_at_100
1015
+ value: 81.517
1016
+ - type: ndcg_at_1000
1017
+ value: 81.517
1018
+ - type: ndcg_at_3
1019
+ value: 76.504
1020
+ - type: ndcg_at_5
1021
+ value: 78.79899999999999
1022
+ - type: precision_at_1
1023
+ value: 64.7
1024
+ - type: precision_at_10
1025
+ value: 9.520000000000001
1026
+ - type: precision_at_100
1027
+ value: 1
1028
+ - type: precision_at_1000
1029
+ value: 0.1
1030
+ - type: precision_at_3
1031
+ value: 28.266999999999996
1032
+ - type: precision_at_5
1033
+ value: 18.060000000000002
1034
+ - type: recall_at_1
1035
+ value: 64.7
1036
+ - type: recall_at_10
1037
+ value: 95.19999999999999
1038
+ - type: recall_at_100
1039
+ value: 100
1040
+ - type: recall_at_1000
1041
+ value: 100
1042
+ - type: recall_at_3
1043
+ value: 84.8
1044
+ - type: recall_at_5
1045
+ value: 90.3
1046
+ - task:
1047
+ type: Classification
1048
+ dataset:
1049
+ name: MTEB Waimai
1050
+ type: C-MTEB/waimai-classification
1051
+ config: default
1052
+ split: test
1053
+ revision: None
1054
+ metrics:
1055
+ - type: accuracy
1056
+ value: 89.69999999999999
1057
+ - type: ap
1058
+ value: 75.91371640164184
1059
+ - type: f1
1060
+ value: 88.34067777698694
1061
+ ---
1062
+
1063
+ # lagoon999/Conan-embedding-v1-Q4_K_M-GGUF
1064
+ This model was converted to GGUF format from [`TencentBAC/Conan-embedding-v1`](https://huggingface.co/TencentBAC/Conan-embedding-v1) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
1065
+ Refer to the [original model card](https://huggingface.co/TencentBAC/Conan-embedding-v1) for more details on the model.
1066
+
1067
+ ## Use with llama.cpp
1068
+ Install llama.cpp through brew (works on Mac and Linux)
1069
+
1070
+ ```bash
1071
+ brew install llama.cpp
1072
+
1073
+ ```
1074
+ Invoke the llama.cpp server or the CLI.
1075
+
1076
+ ### CLI:
1077
+ ```bash
1078
+ llama-cli --hf-repo lagoon999/Conan-embedding-v1-Q4_K_M-GGUF --hf-file conan-embedding-v1-q4_k_m.gguf -p "The meaning to life and the universe is"
1079
+ ```
1080
+
1081
+ ### Server:
1082
+ ```bash
1083
+ llama-server --hf-repo lagoon999/Conan-embedding-v1-Q4_K_M-GGUF --hf-file conan-embedding-v1-q4_k_m.gguf -c 2048
1084
+ ```
1085
+
1086
+ Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
1087
+
1088
+ Step 1: Clone llama.cpp from GitHub.
1089
+ ```
1090
+ git clone https://github.com/ggerganov/llama.cpp
1091
+ ```
1092
+
1093
+ Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
1094
+ ```
1095
+ cd llama.cpp && LLAMA_CURL=1 make
1096
+ ```
1097
+
1098
+ Step 3: Run inference through the main binary.
1099
+ ```
1100
+ ./llama-cli --hf-repo lagoon999/Conan-embedding-v1-Q4_K_M-GGUF --hf-file conan-embedding-v1-q4_k_m.gguf -p "The meaning to life and the universe is"
1101
+ ```
1102
+ or
1103
+ ```
1104
+ ./llama-server --hf-repo lagoon999/Conan-embedding-v1-Q4_K_M-GGUF --hf-file conan-embedding-v1-q4_k_m.gguf -c 2048
1105
+ ```