File size: 6,107 Bytes
72787fb
 
 
 
 
 
 
 
 
 
 
 
 
2203981
19057a7
642ebbe
 
 
 
 
 
 
 
 
 
 
 
6b5f674
72787fb
 
 
 
a0028f6
6f2a401
72787fb
 
 
 
 
 
 
9268a68
72787fb
9268a68
 
72787fb
9268a68
 
 
 
 
 
72787fb
9268a68
72787fb
9268a68
72787fb
9268a68
72787fb
 
 
 
 
 
 
 
9268a68
72787fb
 
 
 
 
 
 
 
 
 
24f4ef7
72787fb
 
 
 
 
 
 
 
 
 
24f4ef7
72787fb
24f4ef7
 
72787fb
 
 
 
 
 
24f4ef7
72787fb
 
 
 
 
 
 
 
 
 
 
 
8f31645
 
 
 
 
 
 
 
 
72787fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f8424d
 
642ebbe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
---
license: apache-2.0
language:
- en
metrics:
- bleu
- rouge
tags:
- causal-lm
- code
- cypher
- graph
- neo4j
inference: false
widget:
- text: >-
    Show me the people who have Python and Cloud skills and have been in the
    company for at least 3 years.
  example_title: Example 1
- text: What is the IMDb rating of Pulp Fiction?
  example_title: Example 2
- text: >-
    Display the first 3 users followed by 'Neo4j' who have more than 10000
    followers.
  example_title: Example 3
base_model:
- stabilityai/stable-code-instruct-3b
base_model_relation: finetune
---

## Model Description

A specialized 3B parameters model beating SoA models such as GPT4-o at generating CYPHER.
It's a finetune of https://huggingface.co/stabilityai/stable-code-instruct-3b trained on https://github.com/neo4j-labs/text2cypher/tree/main/datasets/synthetic_opus_demodbs to generate CYPHER queries from text to query GraphDB such as neo4j.

## Usage

### Safetensors (recommended)

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained("lakkeo/stable-cypher-instruct-3b", trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained("lakkeo/stable-cypher-instruct-3b", torch_dtype=torch.bfloat16, trust_remote_code=True)

messages = [
    {
        "role": "user",
        "content": "Show me the people who have Python and Cloud skills and have been in the company for at least 3 years."
    }
]

prompt = tokenizer.apply_chat_template(messages, add_generation_prompt=True, tokenize=False)

inputs = tokenizer([prompt], return_tensors="pt").to(model.device)

tokens = model.generate(
        **inputs,
        max_new_tokens=128,
        do_sample=True,
        top_p=0.9,
        temperature=0.2,
        pad_token_id=tokenizer.eos_token_id,
    )

outputs = tokenizer.batch_decode(tokens[:, inputs.input_ids.shape[-1]:], skip_special_tokens=False)[0]
```

### GGUF

```python
from llama_cpp import Llama

# Load the GGUF model
print("Loading model...")
model = Llama(
    model_path=r"C:\Users\John\stable-cypher-instruct-3b.Q4_K_M.gguf",
    n_ctx=512,
    n_batch=512,
    n_gpu_layers=-1,  # Use all available GPU layers
    max_tokens=128,
    top_p=0.9,
    temperature=0.2,
    verbose=False 
)

# Define your question
question = "Show me the people who have Python and Cloud skills and have been in the company for at least 3 years."

# Create the full prompt (simulating the apply_chat_template function)
full_prompt = f"<|im_start|>system\nCreate a Cypher statement to answer the following question:<|im_end|>\n<|im_start|>user\n{question}<|im_end|>\n<|im_start|>assistant\n"

# Generate response
print("Generating response...")
response = model(
    full_prompt,
    max_tokens=128,
    stop=["<|im_end|>", "<|im_start|>"],
    echo=False
)

# Extract and print the generated response
answer = response['choices'][0]['text'].strip()
print("\nQuestion:", question)
print("\nGenerated Cypher statement:")
print(answer)
```

## Performance

| Metric       | stable-code-instruct-3b |   gpt4-o   | stable-cypher-instruct-3b |
| :----------: | :---------------------: | :--------: | :-----------------------: |
| BLEU-4       |         19.07           |   32.35    |         **88.63**         |
| ROUGE-1      |         39.49           |   69.17    |         **95.09**         |
| ROUGE-2      |         24.82           |   46.97    |         **90.71**         |
| ROUGE-L      |         29.63           |   65.24    |         **91.51**         |
| Jaro-Winkler |         52.21           |   86.38    |         **95.69**         |
| Jaccard      |         25.55           |   72.80    |         **90.78**         |
| Pass@1       |         0.00            |   0.00     |         **51.80**         |

### Example
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6504bb76423b46492e7f38c7/pweL4qgmFaknLBYp-CGHm.png)

### Eval params
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6504bb76423b46492e7f38c7/AT80-09XrHNz-dJs9TH3M.png)

## Reproducability

This is the config file from Llama Factory :

```json
{
  "top.model_name": "Custom",
  "top.finetuning_type": "lora",
  "top.adapter_path": [],
  "top.quantization_bit": "none",
  "top.template": "default",
  "top.rope_scaling": "none",
  "top.booster": "none",
  "train.training_stage": "Supervised Fine-Tuning",
  "train.dataset_dir": "data",
  "train.dataset": [
    "cypher_opus"
  ],
  "train.learning_rate": "2e-4",
  "train.num_train_epochs": "5.0",
  "train.max_grad_norm": "1.0",
  "train.max_samples": "5000",
  "train.compute_type": "fp16",
  "train.cutoff_len": 256,
  "train.batch_size": 16,
  "train.gradient_accumulation_steps": 2,
  "train.val_size": 0.1,
  "train.lr_scheduler_type": "cosine",
  "train.logging_steps": 10,
  "train.save_steps": 100,
  "train.warmup_steps": 20,
  "train.neftune_alpha": 0,
  "train.optim": "adamw_torch",
  "train.resize_vocab": false,
  "train.packing": false,
  "train.upcast_layernorm": false,
  "train.use_llama_pro": false,
  "train.shift_attn": false,
  "train.report_to": false,
  "train.num_layer_trainable": 3,
  "train.name_module_trainable": "all",
  "train.lora_rank": 64,
  "train.lora_alpha": 64,
  "train.lora_dropout": 0.1,
  "train.loraplus_lr_ratio": 0,
  "train.create_new_adapter": false,
  "train.use_rslora": false,
  "train.use_dora": true,
  "train.lora_target": "",
  "train.additional_target": "",
  "train.dpo_beta": 0.1,
  "train.dpo_ftx": 0,
  "train.orpo_beta": 0.1,
  "train.reward_model": null,
  "train.use_galore": false,
  "train.galore_rank": 16,
  "train.galore_update_interval": 200,
  "train.galore_scale": 0.25,
  "train.galore_target": "all"
}
```

I used llama.cpp to merge the LoRa and generate the quants.

The progress achieved from the base model is significant but you will still need to finetune on your company's syntax and entities.
I've been tickering with the training parameters for a few batches of training but there is room for improvements.
I'm open to the idea of making a full tutorial if there is enough interest in this project.