File size: 1,727 Bytes
a9f6eb2
 
 
 
 
 
 
 
 
 
 
f43e010
a9f6eb2
f43e010
a9f6eb2
 
 
b293866
a9f6eb2
 
c15d0cd
a9f6eb2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b5a6445
c4f09e7
 
 
a9f6eb2
b5a6445
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
---
language: 
  - en
thumbnail: "https://staticassetbucket.s3.us-west-1.amazonaws.com/avatar_grid.png"
tags:
- dreambooth
- stable-diffusion
- stable-diffusion-diffusers
- text-to-image
---

# Dreambooth style: Avatar

__Dreambooth finetuning of Stable Diffusion (v1.5.1) on Avatar art style by [Lambda Labs](https://lambdalabs.com/).__

## About

This text-to-image stable diffusion model was trained with dreambooth.  
Put in a text prompt and generate your own Avatar style image!

![pk1.jpg](https://staticassetbucket.s3.us-west-1.amazonaws.com/avatar_grid.png)

## Usage

To run model locally:
```bash
pip install accelerate torchvision transformers>=4.21.0 ftfy tensorboard modelcards
```

```python
import torch
from diffusers import StableDiffusionPipeline
from torch import autocast

pipe = StableDiffusionPipeline.from_pretrained("lambdalabs/dreambooth-avatar", torch_dtype=torch.float16)  
pipe = pipe.to("cuda")

prompt = "Yoda, avatarart style person"
scale = 7.5
n_samples = 4

with autocast("cuda"):
  images = pipe(n_samples*[prompt], guidance_scale=scale).images

for idx, im in enumerate(images):
  im.save(f"{idx:06}.png")
```

## Model description

Base model is Stable Diffusion v1.5 and was trained using Dreambooth with 60 input images sized 512x512 displaying Avatar character images.
The model is learning to associate Avatar images with the style tokenized as 'avatarart style'.
Prior preservation was used during training using the class 'Person' to avoid training bleeding into the representations for that class.
Training ran on 2xA6000 GPUs on [Lambda GPU Cloud](https://lambdalabs.com/service/gpu-cloud) for 700 steps, batch size 4 (a couple hours, at a cost of about $4).

Author: Eole Cervenka