--- license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer datasets: - conll2003 model-index: - name: deberta-v3-base_conll03 results: [] --- # deberta-v3-base_conll03 This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on the conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0973 - F1-type-match: 0.9316 - F1-partial: 0.9733 - F1-strict: 0.9235 - F1-exact: 0.9651 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1-type-match | F1-partial | F1-strict | F1-exact | |:-------------:|:-----:|:----:|:---------------:|:-------------:|:----------:|:---------:|:--------:| | 0.0963 | 1.0 | 439 | 0.0814 | 0.8408 | 0.8897 | 0.8323 | 0.8809 | | 0.0197 | 2.0 | 878 | 0.0803 | 0.9219 | 0.9725 | 0.9138 | 0.9648 | | 0.0108 | 3.0 | 1317 | 0.0858 | 0.9307 | 0.9728 | 0.9228 | 0.9648 | | 0.0054 | 4.0 | 1756 | 0.0922 | 0.9313 | 0.9725 | 0.9235 | 0.9643 | | 0.0033 | 5.0 | 2195 | 0.0973 | 0.9316 | 0.9733 | 0.9235 | 0.9651 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.15.0