End of training
Browse files
README.md
CHANGED
@@ -20,11 +20,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
20 |
|
21 |
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
-
- Loss: 0.
|
24 |
- Precision: 1.0
|
25 |
- Recall: 1.0
|
26 |
- F1: 1.0
|
27 |
-
- Accuracy: 0
|
28 |
|
29 |
## Model description
|
30 |
|
@@ -55,21 +55,21 @@ The following hyperparameters were used during training:
|
|
55 |
|
56 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
-
| No log | 0.
|
59 |
-
| No log | 0.
|
60 |
-
| No log | 0.
|
61 |
-
| No log |
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
|
69 |
|
70 |
### Framework versions
|
71 |
|
72 |
-
- Transformers 4.43.
|
73 |
- Pytorch 2.1.0+cu118
|
74 |
- Datasets 2.20.0
|
75 |
- Tokenizers 0.19.1
|
|
|
20 |
|
21 |
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset.
|
22 |
It achieves the following results on the evaluation set:
|
23 |
+
- Loss: 0.0209
|
24 |
- Precision: 1.0
|
25 |
- Recall: 1.0
|
26 |
- F1: 1.0
|
27 |
+
- Accuracy: 1.0
|
28 |
|
29 |
## Model description
|
30 |
|
|
|
55 |
|
56 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
57 |
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
58 |
+
| No log | 0.0290 | 100 | 0.8242 | 0.9549 | 0.9520 | 0.9534 | 0.7171 |
|
59 |
+
| No log | 0.0579 | 200 | 0.5708 | 0.9636 | 0.9772 | 0.9703 | 0.7951 |
|
60 |
+
| No log | 0.0869 | 300 | 0.3493 | 0.9993 | 0.9993 | 0.9993 | 0.8839 |
|
61 |
+
| No log | 0.1158 | 400 | 0.1466 | 0.9998 | 0.9998 | 0.9998 | 0.9752 |
|
62 |
+
| 0.6024 | 0.1448 | 500 | 0.0689 | 0.9965 | 0.9972 | 0.9969 | 0.9823 |
|
63 |
+
| 0.6024 | 0.1738 | 600 | 0.0442 | 1.0 | 1.0 | 1.0 | 0.9946 |
|
64 |
+
| 0.6024 | 0.2027 | 700 | 0.0360 | 1.0 | 1.0 | 1.0 | 0.9847 |
|
65 |
+
| 0.6024 | 0.2317 | 800 | 0.0280 | 1.0 | 1.0 | 1.0 | 0.9972 |
|
66 |
+
| 0.6024 | 0.2606 | 900 | 0.0247 | 1.0 | 1.0 | 1.0 | 0.9953 |
|
67 |
+
| 0.0516 | 0.2896 | 1000 | 0.0209 | 1.0 | 1.0 | 1.0 | 1.0 |
|
68 |
|
69 |
|
70 |
### Framework versions
|
71 |
|
72 |
+
- Transformers 4.43.3
|
73 |
- Pytorch 2.1.0+cu118
|
74 |
- Datasets 2.20.0
|
75 |
- Tokenizers 0.19.1
|