mjbuehler commited on
Commit
e2c2154
1 Parent(s): 144ab04

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +21 -18
README.md CHANGED
@@ -12,6 +12,7 @@ tags:
12
  - bio-inspired
13
  - text-generation-inference
14
  - materials science
 
15
  pipeline_tag: image-text-to-text
16
  inference:
17
  parameters:
@@ -19,7 +20,7 @@ inference:
19
  widget:
20
  - messages:
21
  - role: user
22
- content: <|image_1|>Can you describe what you see in the image?
23
  library_name: transformers
24
  ---
25
  ## Model Summary
@@ -36,22 +37,20 @@ The model is developed to process diverse inputs, including images and text, fac
36
 
37
  Cephalo provides a robust framework for multimodal interaction and understanding, including the development of complex generative pipelines to create 2D and 3D renderings of material microstructures as input for additive manufacturing methods.
38
 
39
- This version of Cephalo, lamm-mit/Cephalo-Phi-3-vision-128k-4b-alpha, is based on the Phi-3-Vision-128K-Instruct model. The model has a context length of 128,000 tokens. Further details, see: https://huggingface.co/microsoft/Phi-3-vision-128k-instruct.
40
 
41
  ### Chat Format
42
 
43
- Given the nature of the training data, the Cephalo-Phi-3-vision-128k-4b-alpha model is best suited for a single image input wih prompts using the chat format as follows.
44
 
45
- You can provide the prompt as a single image with a generic template as follow:
46
  ```markdown
47
- <|user|>\n<|image_1|>\n{prompt}<|end|>\n<|assistant|>\n
48
  ```
49
 
50
- The model generates the text after `<|assistant|>` . For multi-turn conversations, the prompt should be formatted as follows:
51
 
52
  ```markdown
53
- <|user|>\n<|image_1|>\n{prompt_1}<|end|>\n<|assistant|>\n{response_1}<|end|>\n<|user|>\n{prompt_2}<|end|>\n<|assistant|>\n
54
- ```
55
 
56
  ### Sample inference code
57
 
@@ -60,17 +59,21 @@ This code snippets show how to get quickly started on a GPU:
60
  ```python
61
  from PIL import Image
62
  import requests
63
- from transformers import AutoModelForCausalLM
64
  from transformers import AutoProcessor
65
 
66
- model_id = "lamm-mit/Cephalo-Phi-3-vision-128k-4b-alpha"
67
-
68
- model = AutoModelForCausalLM.from_pretrained(model_id, device_map="cuda", trust_remote_code=True, torch_dtype="auto")
69
 
70
- processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True)
 
 
 
 
 
 
71
 
72
  messages = [
73
- {"role": "user", "content": "<|image_1|>\nWhat is shown in this image, and what is the relevance for materials design?"},
74
  ]
75
 
76
  url = "https://d2r55xnwy6nx47.cloudfront.net/uploads/2018/02/Ants_Lede1300.jpg"
@@ -85,8 +88,7 @@ generation_args = {
85
  "max_new_tokens": 512,
86
  "temperature": 0.1,
87
  "do_sample": True,
88
- "stop_strings": ['<|end|>',
89
- '<|endoftext|>'],
90
  "tokenizer": processor.tokenizer,
91
  }
92
 
@@ -104,9 +106,10 @@ Sample output:
104
  <small>Image by [Vaishakh Manohar](https://www.quantamagazine.org/the-simple-algorithm-that-ants-use-to-build-bridges-20180226/)</small>
105
 
106
  <pre style="white-space: pre-wrap;">
107
- The image shows a group of red imported fire ants (Solenopsis invicta) forming a bridge between two wooden posts. The relevance for materials design lies in the ants' ability to construct a bridge using their body parts, which demonstrates the potential for biomimetic design. Biomimetic design involves emulating natural processes and structures to create new materials and technologies. The ants' bridge construction could inspire the development of novel materials with enhanced structural properties, such as lightweight yet strong materials for construction and engineering applications.
108
- </pre>
109
 
 
 
110
 
111
  ## Dataset generation
112
 
 
12
  - bio-inspired
13
  - text-generation-inference
14
  - materials science
15
+ - Llava-NEXT
16
  pipeline_tag: image-text-to-text
17
  inference:
18
  parameters:
 
20
  widget:
21
  - messages:
22
  - role: user
23
+ content: <s>[INST] <image>\nDescribe what you see in the image. [/INST]
24
  library_name: transformers
25
  ---
26
  ## Model Summary
 
37
 
38
  Cephalo provides a robust framework for multimodal interaction and understanding, including the development of complex generative pipelines to create 2D and 3D renderings of material microstructures as input for additive manufacturing methods.
39
 
40
+ This version of Cephalo, lamm-mit/Cephalo-Llava-v1.6-Mistral-8b-alpha, is based on the Llava-v1.6-Mistral-8b-alpha model. Further details, see: https://huggingface.co/llava-hf/llava-v1.6-mistral-7b-hf.
41
 
42
  ### Chat Format
43
 
44
+ Given the nature of the training data, the lamm-mit/Cephalo-Llava-v1.6-Mistral-8b-alpha model is best suited for the chat format as follows.
45
 
 
46
  ```markdown
47
+ <s>[INST] <image>\nQuestion 1 [/INST]Answer 2</s>
48
  ```
49
 
50
+ The model generates the text after `[/INST]`. For multi-turn conversations, the prompt should be formatted as follows:
51
 
52
  ```markdown
53
+ <s>[INST] <image>\nQuestion 1 [/INST]Answer 1</s>[INST] Question 2 [/INST]Answer 2</s>```
 
54
 
55
  ### Sample inference code
56
 
 
59
  ```python
60
  from PIL import Image
61
  import requests
62
+ from transformers import LlavaNextForConditionalGeneration
63
  from transformers import AutoProcessor
64
 
65
+ model_id='lamm-mit/Cephalo-Llava-v1.6-Mistral-8b-alpha'
 
 
66
 
67
+ model = LlavaNextForConditionalGeneration.from_pretrained(model_id,
68
+ torch_dtype=torch.bfloat16,
69
+ _attn_implementation="flash_attention_2",
70
+ ).to (DEVICE )
71
+ processor = AutoProcessor.from_pretrained(
72
+ model_id,
73
+ )
74
 
75
  messages = [
76
+ {"role": "user", "content": "<image>\nWhat is shown in this image, and what is the relevance for materials design?"},
77
  ]
78
 
79
  url = "https://d2r55xnwy6nx47.cloudfront.net/uploads/2018/02/Ants_Lede1300.jpg"
 
88
  "max_new_tokens": 512,
89
  "temperature": 0.1,
90
  "do_sample": True,
91
+ "stop_strings": ['</s>',],
 
92
  "tokenizer": processor.tokenizer,
93
  }
94
 
 
106
  <small>Image by [Vaishakh Manohar](https://www.quantamagazine.org/the-simple-algorithm-that-ants-use-to-build-bridges-20180226/)</small>
107
 
108
  <pre style="white-space: pre-wrap;">
109
+ The image shows an ant colony in the process of building a bridge between two surfaces. The ants are working together to construct a pathway using their bodies as scaffolding. This demonstrates the concept of cooperative construction in nature, where individual ants contribute to the overall structure.
 
110
 
111
+ The relevance for materials design lies in the efficiency and precision of the ant's construction. The ants are able to create a strong and stable bridge with minimal material usage, which can inspire the development of new construction techniques in materials science. The image highlights the importance of collaboration and the use of natural principles in engineering design.
112
+ </pre>
113
 
114
  ## Dataset generation
115