Update README.md
Browse files
README.md
CHANGED
@@ -32,4 +32,91 @@ widget:
|
|
32 |
- text: "[INST] who holds this neighborhood? [/INST]"
|
33 |
---
|
34 |
|
35 |
-
# Dragoman: English-Ukrainian Machine Translation Model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
- text: "[INST] who holds this neighborhood? [/INST]"
|
33 |
---
|
34 |
|
35 |
+
# Dragoman: English-Ukrainian Machine Translation Model
|
36 |
+
|
37 |
+
## Model Description
|
38 |
+
|
39 |
+
The Dragoman is a sentence-level SOTA English-Ukrainian translation model. It's trained using a two-phase pipeline: pretraining on cleaned [Paracrawl](https://huggingface.co/datasets/Helsinki-NLP/opus_paracrawl) dataset and unsupervised data selection phase on [turuta/Multi30k-uk](https://huggingface.co/datasets/turuta/Multi30k-uk).
|
40 |
+
|
41 |
+
By using a two-phase data cleaning and data selection approach we have achieved SOTA performance on FLORES-101 English-Ukrainian devtest subset with **BLEU** `32.34`.
|
42 |
+
|
43 |
+
|
44 |
+
## Model Details
|
45 |
+
|
46 |
+
- **Developed by:** Yurii Paniv, Dmytro Chaplynskyi, Nikita Trynus, Volodymyr Kyrylov
|
47 |
+
- **Model type:** Translation model
|
48 |
+
- **Language(s):**
|
49 |
+
- Source Language: English
|
50 |
+
- Target Language: Ukrainian
|
51 |
+
- **License:** Apache 2.0
|
52 |
+
|
53 |
+
## Model Use Cases
|
54 |
+
|
55 |
+
We designed this model for sentence-level English -> Ukrainian translation.
|
56 |
+
Performance on multi-sentence texts is not guaranteed, please be aware.
|
57 |
+
|
58 |
+
|
59 |
+
#### Running the model
|
60 |
+
|
61 |
+
|
62 |
+
```python
|
63 |
+
# pip install bitsandbytes transformers peft torch
|
64 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
65 |
+
import torch
|
66 |
+
|
67 |
+
config = PeftConfig.from_pretrained("lang-uk/dragoman")
|
68 |
+
quant_config = BitsAndBytesConfig(
|
69 |
+
load_in_4bit=True,
|
70 |
+
bnb_4bit_quant_type="nf4",
|
71 |
+
bnb_4bit_compute_dtype=float16,
|
72 |
+
bnb_4bit_use_double_quant=False,
|
73 |
+
)
|
74 |
+
|
75 |
+
model = MistralForCausalLM.from_pretrained(
|
76 |
+
"mistralai/Mistral-7B-v0.1", quantization_config=quant_config
|
77 |
+
)
|
78 |
+
model = PeftModel.from_pretrained(model, "lang-uk/dragoman").to("cuda")
|
79 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
80 |
+
"mistralai/Mistral-7B-v0.1", use_fast=False, add_bos_token=False
|
81 |
+
)
|
82 |
+
|
83 |
+
input_text = "[INST] who holds this neighborhood? [/INST]" # model input should adhere to this format
|
84 |
+
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
85 |
+
|
86 |
+
outputs = model.generate(**input_ids)
|
87 |
+
print(tokenizer.decode(outputs[0]))
|
88 |
+
```
|
89 |
+
|
90 |
+
### Training Dataset and Resources
|
91 |
+
|
92 |
+
Training code: [lang-uk/dragoman](https://github.com/lang-uk/dragoman)
|
93 |
+
Cleaned Paracrawl: [lang-uk/paracrawl_3m](https://huggingface.co/datasets/lang-uk/paracrawl_3m)
|
94 |
+
Cleaned Multi30K: [lang-uk/multi30k-extended-17k](https://huggingface.co/datasets/lang-uk/multi30k-extended-17k)
|
95 |
+
|
96 |
+
|
97 |
+
|
98 |
+
### Benchmark Results against other models on FLORES-101 devset
|
99 |
+
|
100 |
+
|
101 |
+
| **Model** | **BLEU** $\uparrow$ | **spBLEU** | **chrF** | **chrF++** |
|
102 |
+
|---------------------------------------------|---------------------|-------------|----------|------------|
|
103 |
+
| **Finetuned** | | | | |
|
104 |
+
| Dragoman P, 10 beams | 30.38 | 37.93 | 59.49 | 56.41 |
|
105 |
+
| Dragoman PT, 10 beams | **32.34** | **39.93** | **60.72**| **57.82** |
|
106 |
+
|---------------------------------------------|---------------------|-------------|----------|------------|
|
107 |
+
| **Zero shot and few shot** | | | | |
|
108 |
+
| LLaMa-2-7B 2-shot | 20.1 | 26.78 | 49.22 | 46.29 |
|
109 |
+
| RWKV-5-World-7B 0-shot | 21.06 | 26.20 | 49.46 | 46.46 |
|
110 |
+
| gpt-4 10-shot | 29.48 | 37.94 | 58.37 | 55.38 |
|
111 |
+
| gpt-4-turbo-preview 0-shot | 30.36 | 36.75 | 59.18 | 56.19 |
|
112 |
+
| Google Translate 0-shot | 25.85 | 32.49 | 55.88 | 52.48 |
|
113 |
+
|---------------------------------------------|---------------------|-------------|----------|------------|
|
114 |
+
| **Pretrained** | | | | |
|
115 |
+
| NLLB 3B, 10 beams | 30.46 | 37.22 | 58.11 | 55.32 |
|
116 |
+
| OPUS-MT, 10 beams | 32.2 | 39.76 | 60.23 | 57.38 |
|
117 |
+
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
|
122 |
+
|