Text Generation
PEFT
Safetensors
Ukrainian
English
translation
Eval Results
robinhad commited on
Commit
83fc491
1 Parent(s): 557f12d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +88 -1
README.md CHANGED
@@ -32,4 +32,91 @@ widget:
32
  - text: "[INST] who holds this neighborhood? [/INST]"
33
  ---
34
 
35
- # Dragoman: English-Ukrainian Machine Translation Model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
32
  - text: "[INST] who holds this neighborhood? [/INST]"
33
  ---
34
 
35
+ # Dragoman: English-Ukrainian Machine Translation Model
36
+
37
+ ## Model Description
38
+
39
+ The Dragoman is a sentence-level SOTA English-Ukrainian translation model. It's trained using a two-phase pipeline: pretraining on cleaned [Paracrawl](https://huggingface.co/datasets/Helsinki-NLP/opus_paracrawl) dataset and unsupervised data selection phase on [turuta/Multi30k-uk](https://huggingface.co/datasets/turuta/Multi30k-uk).
40
+
41
+ By using a two-phase data cleaning and data selection approach we have achieved SOTA performance on FLORES-101 English-Ukrainian devtest subset with **BLEU** `32.34`.
42
+
43
+
44
+ ## Model Details
45
+
46
+ - **Developed by:** Yurii Paniv, Dmytro Chaplynskyi, Nikita Trynus, Volodymyr Kyrylov
47
+ - **Model type:** Translation model
48
+ - **Language(s):**
49
+ - Source Language: English
50
+ - Target Language: Ukrainian
51
+ - **License:** Apache 2.0
52
+
53
+ ## Model Use Cases
54
+
55
+ We designed this model for sentence-level English -> Ukrainian translation.
56
+ Performance on multi-sentence texts is not guaranteed, please be aware.
57
+
58
+
59
+ #### Running the model
60
+
61
+
62
+ ```python
63
+ # pip install bitsandbytes transformers peft torch
64
+ from transformers import AutoTokenizer, AutoModelForCausalLM
65
+ import torch
66
+
67
+ config = PeftConfig.from_pretrained("lang-uk/dragoman")
68
+ quant_config = BitsAndBytesConfig(
69
+ load_in_4bit=True,
70
+ bnb_4bit_quant_type="nf4",
71
+ bnb_4bit_compute_dtype=float16,
72
+ bnb_4bit_use_double_quant=False,
73
+ )
74
+
75
+ model = MistralForCausalLM.from_pretrained(
76
+ "mistralai/Mistral-7B-v0.1", quantization_config=quant_config
77
+ )
78
+ model = PeftModel.from_pretrained(model, "lang-uk/dragoman").to("cuda")
79
+ tokenizer = AutoTokenizer.from_pretrained(
80
+ "mistralai/Mistral-7B-v0.1", use_fast=False, add_bos_token=False
81
+ )
82
+
83
+ input_text = "[INST] who holds this neighborhood? [/INST]" # model input should adhere to this format
84
+ input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
85
+
86
+ outputs = model.generate(**input_ids)
87
+ print(tokenizer.decode(outputs[0]))
88
+ ```
89
+
90
+ ### Training Dataset and Resources
91
+
92
+ Training code: [lang-uk/dragoman](https://github.com/lang-uk/dragoman)
93
+ Cleaned Paracrawl: [lang-uk/paracrawl_3m](https://huggingface.co/datasets/lang-uk/paracrawl_3m)
94
+ Cleaned Multi30K: [lang-uk/multi30k-extended-17k](https://huggingface.co/datasets/lang-uk/multi30k-extended-17k)
95
+
96
+
97
+
98
+ ### Benchmark Results against other models on FLORES-101 devset
99
+
100
+
101
+ | **Model** | **BLEU** $\uparrow$ | **spBLEU** | **chrF** | **chrF++** |
102
+ |---------------------------------------------|---------------------|-------------|----------|------------|
103
+ | **Finetuned** | | | | |
104
+ | Dragoman P, 10 beams | 30.38 | 37.93 | 59.49 | 56.41 |
105
+ | Dragoman PT, 10 beams | **32.34** | **39.93** | **60.72**| **57.82** |
106
+ |---------------------------------------------|---------------------|-------------|----------|------------|
107
+ | **Zero shot and few shot** | | | | |
108
+ | LLaMa-2-7B 2-shot | 20.1 | 26.78 | 49.22 | 46.29 |
109
+ | RWKV-5-World-7B 0-shot | 21.06 | 26.20 | 49.46 | 46.46 |
110
+ | gpt-4 10-shot | 29.48 | 37.94 | 58.37 | 55.38 |
111
+ | gpt-4-turbo-preview 0-shot | 30.36 | 36.75 | 59.18 | 56.19 |
112
+ | Google Translate 0-shot | 25.85 | 32.49 | 55.88 | 52.48 |
113
+ |---------------------------------------------|---------------------|-------------|----------|------------|
114
+ | **Pretrained** | | | | |
115
+ | NLLB 3B, 10 beams | 30.46 | 37.22 | 58.11 | 55.32 |
116
+ | OPUS-MT, 10 beams | 32.2 | 39.76 | 60.23 | 57.38 |
117
+
118
+
119
+
120
+
121
+
122
+