--- license: apache-2.0 datasets: - Helsinki-NLP/opus_paracrawl - turuta/Multi30k-uk language: - uk - en metrics: - bleu library_name: peft pipeline_tag: text-generation base_model: mistralai/Mistral-7B-v0.1 tags: - translation model-index: - name: Dragoman results: - task: type: translation # Required. Example: automatic-speech-recognition name: English-Ukrainian Translation # Optional. Example: Speech Recognition dataset: type: facebook/flores # Required. Example: common_voice. Use dataset id from https://hf.co/datasets name: FLORES-101 # Required. A pretty name for the dataset. Example: Common Voice (French) config: eng_Latn-ukr_Cyrl # Optional. The name of the dataset configuration used in `load_dataset()`. Example: fr in `load_dataset("common_voice", "fr")`. See the `datasets` docs for more info: https://huggingface.co/docs/datasets/package_reference/loading_methods#datasets.load_dataset.name split: devtest # Optional. Example: test metrics: - type: bleu # Required. Example: wer. Use metric id from https://hf.co/metrics value: 32.34 # Required. Example: 20.90 name: Test BLEU # Optional. Example: Test WER widget: - text: "[INST] who holds this neighborhood? [/INST]" --- # Dragoman: English-Ukrainian Machine Translation Model ## Model Description The Dragoman is a sentence-level SOTA English-Ukrainian translation model. It's trained using a two-phase pipeline: pretraining on cleaned [Paracrawl](https://huggingface.co/datasets/Helsinki-NLP/opus_paracrawl) dataset and unsupervised data selection phase on [turuta/Multi30k-uk](https://huggingface.co/datasets/turuta/Multi30k-uk). By using a two-phase data cleaning and data selection approach we have achieved SOTA performance on FLORES-101 English-Ukrainian devtest subset with **BLEU** `32.34`. ## Model Details - **Developed by:** Yurii Paniv, Dmytro Chaplynskyi, Nikita Trynus, Volodymyr Kyrylov - **Model type:** Translation model - **Language(s):** - Source Language: English - Target Language: Ukrainian - **License:** Apache 2.0 ## Model Use Cases We designed this model for sentence-level English -> Ukrainian translation. Performance on multi-sentence texts is not guaranteed, please be aware. #### Running the model ```python # pip install bitsandbytes transformers peft torch from transformers import AutoTokenizer, AutoModelForCausalLM import torch config = PeftConfig.from_pretrained("lang-uk/dragoman") quant_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=float16, bnb_4bit_use_double_quant=False, ) model = MistralForCausalLM.from_pretrained( "mistralai/Mistral-7B-v0.1", quantization_config=quant_config ) model = PeftModel.from_pretrained(model, "lang-uk/dragoman").to("cuda") tokenizer = AutoTokenizer.from_pretrained( "mistralai/Mistral-7B-v0.1", use_fast=False, add_bos_token=False ) input_text = "[INST] who holds this neighborhood? [/INST]" # model input should adhere to this format input_ids = tokenizer(input_text, return_tensors="pt").to("cuda") outputs = model.generate(**input_ids) print(tokenizer.decode(outputs[0])) ``` ### Training Dataset and Resources Training code: [lang-uk/dragoman](https://github.com/lang-uk/dragoman) Cleaned Paracrawl: [lang-uk/paracrawl_3m](https://huggingface.co/datasets/lang-uk/paracrawl_3m) Cleaned Multi30K: [lang-uk/multi30k-extended-17k](https://huggingface.co/datasets/lang-uk/multi30k-extended-17k) ### Benchmark Results against other models on FLORES-101 devset | **Model** | **BLEU** $\uparrow$ | **spBLEU** | **chrF** | **chrF++** | |---------------------------------------------|---------------------|-------------|----------|------------| | **Finetuned** | | | | | | Dragoman P, 10 beams | 30.38 | 37.93 | 59.49 | 56.41 | | Dragoman PT, 10 beams | **32.34** | **39.93** | **60.72**| **57.82** | |---------------------------------------------|---------------------|-------------|----------|------------| | **Zero shot and few shot** | | | | | | LLaMa-2-7B 2-shot | 20.1 | 26.78 | 49.22 | 46.29 | | RWKV-5-World-7B 0-shot | 21.06 | 26.20 | 49.46 | 46.46 | | gpt-4 10-shot | 29.48 | 37.94 | 58.37 | 55.38 | | gpt-4-turbo-preview 0-shot | 30.36 | 36.75 | 59.18 | 56.19 | | Google Translate 0-shot | 25.85 | 32.49 | 55.88 | 52.48 | |---------------------------------------------|---------------------|-------------|----------|------------| | **Pretrained** | | | | | | NLLB 3B, 10 beams | 30.46 | 37.22 | 58.11 | 55.32 | | OPUS-MT, 10 beams | 32.2 | 39.76 | 60.23 | 57.38 | ## Citation TBD