laszlokiss27 commited on
Commit
7293ba5
1 Parent(s): d3d1960

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +36 -0
README.md ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ## Model description
2
+ This is a fine-tuned model based on [apple/mobilevitv2-1.0-imagenet1k-256](https://huggingface.co/apple/mobilevitv2-1.0-imagenet1k-256) trained for sketch image recognition using [Xenova/quickdraw-small](https://huggingface.co/datasets/Xenova/quickdraw-small) dataset.
3
+
4
+ ## How to use?
5
+ ```
6
+ from transformers import MobileViTImageProcessor, MobileViTV2ForImageClassification
7
+ from PIL import Image
8
+ import requests
9
+ import torch
10
+ import numpy as np # Importing NumPy
11
+
12
+ url = "https://static.thenounproject.com/png/2024184-200.png"
13
+ response = requests.get(url, stream=True)
14
+
15
+ # Convert to grayscale to ensure a single channel input
16
+ image = Image.open(response.raw).convert('L') # Convert to grayscale
17
+
18
+ processor = MobileViTImageProcessor.from_pretrained("laszlokiss27/doodle-dash2")
19
+ model = MobileViTV2ForImageClassification.from_pretrained("laszlokiss27/doodle-dash2")
20
+
21
+ # Convert the PIL image to a tensor and add a channel dimension
22
+ image_tensor = torch.unsqueeze(torch.tensor(np.array(image)), 0).float()
23
+ image_tensor = image_tensor.unsqueeze(0) # Add batch dimension
24
+
25
+ # Check if processor requires specific form of input
26
+ inputs = processor(images=image_tensor, return_tensors="pt")
27
+
28
+ outputs = model(**inputs)
29
+ logits = outputs.logits
30
+
31
+ # Get prediction
32
+ predicted_class_idx = logits.argmax(-1).item()
33
+ predicted_class = model.config.id2label[predicted_class_idx]
34
+ print("Predicted class:", predicted_class)
35
+
36
+ ```