--- license: apache-2.0 tags: - generated_from_trainer datasets: - audiofolder metrics: - f1 model-index: - name: wav2vec2-base-finetuned-ks results: - task: name: Audio Classification type: audio-classification dataset: name: audiofolder type: audiofolder config: Data_Train split: train args: Data_Train metrics: - name: F1 type: f1 value: 0.8016517743184772 --- # wav2vec2-base-finetuned-ks This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1858 - F1: 0.8017 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 2.6077 | 1.0 | 602 | 2.5802 | 0.1587 | | 1.9999 | 2.0 | 1204 | 2.0069 | 0.3600 | | 1.4107 | 3.0 | 1806 | 1.6226 | 0.5527 | | 0.9977 | 4.0 | 2408 | 1.2932 | 0.6719 | | 0.8132 | 5.0 | 3010 | 1.2297 | 0.7030 | | 0.5315 | 6.0 | 3612 | 1.0131 | 0.7745 | | 0.5772 | 7.0 | 4214 | 1.1444 | 0.7782 | | 0.0248 | 8.0 | 4816 | 1.1777 | 0.7850 | | 0.0186 | 9.0 | 5418 | 1.2235 | 0.7910 | | 0.2457 | 10.0 | 6020 | 1.1858 | 0.8017 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3