--- license: apache-2.0 tags: - generated_from_trainer datasets: - audiofolder metrics: - accuracy - f1 model-index: - name: wav2vec2-base-finetuned-ks results: - task: name: Audio Classification type: audio-classification dataset: name: audiofolder type: audiofolder config: Data_Train split: train args: Data_Train metrics: - name: Accuracy type: accuracy value: 0.6510736196319018 - name: F1 type: f1 value: 0.5657842671346605 --- # wav2vec2-base-finetuned-ks This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 1.3216 - Accuracy: 0.6511 - F1: 0.5658 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 2.3065 | 1.0 | 1449 | 2.3713 | 0.2991 | 0.1702 | | 1.6849 | 2.0 | 2898 | 1.6462 | 0.5560 | 0.4292 | | 1.4551 | 3.0 | 4347 | 1.3216 | 0.6511 | 0.5658 | ### Framework versions - Transformers 4.31.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3