ld76 commited on
Commit
e458d5c
1 Parent(s): 560ec73

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +91 -0
README.md ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: facebook/wav2vec2-base
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - marsyas/gtzan
8
+ metrics:
9
+ - accuracy
10
+ model-index:
11
+ - name: wav2vec2-base-finetuned-gtzan
12
+ results:
13
+ - task:
14
+ name: Audio Classification
15
+ type: audio-classification
16
+ dataset:
17
+ name: GTZAN
18
+ type: marsyas/gtzan
19
+ config: default
20
+ split: train
21
+ args: default
22
+ metrics:
23
+ - name: Accuracy
24
+ type: accuracy
25
+ value: 0.82
26
+ ---
27
+
28
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
29
+ should probably proofread and complete it, then remove this comment. -->
30
+
31
+ # wav2vec2-base-finetuned-gtzan
32
+
33
+ This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the GTZAN dataset.
34
+ It achieves the following results on the evaluation set:
35
+ - Loss: 0.7770
36
+ - Accuracy: 0.82
37
+
38
+ ## Model description
39
+
40
+ More information needed
41
+
42
+ ## Intended uses & limitations
43
+
44
+ More information needed
45
+
46
+ ## Training and evaluation data
47
+
48
+ More information needed
49
+
50
+ ## Training procedure
51
+
52
+ ### Training hyperparameters
53
+
54
+ The following hyperparameters were used during training:
55
+ - learning_rate: 5e-05
56
+ - train_batch_size: 4
57
+ - eval_batch_size: 4
58
+ - seed: 42
59
+ - gradient_accumulation_steps: 2
60
+ - total_train_batch_size: 8
61
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
62
+ - lr_scheduler_type: linear
63
+ - lr_scheduler_warmup_ratio: 0.1
64
+ - num_epochs: 14
65
+
66
+ ### Training results
67
+
68
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
70
+ | 2.0152 | 1.0 | 112 | 1.9017 | 0.52 |
71
+ | 1.6232 | 2.0 | 225 | 1.5400 | 0.53 |
72
+ | 1.2989 | 3.0 | 337 | 1.1494 | 0.65 |
73
+ | 1.2035 | 4.0 | 450 | 1.1189 | 0.69 |
74
+ | 0.6804 | 5.0 | 562 | 0.8873 | 0.69 |
75
+ | 0.7305 | 6.0 | 675 | 0.7527 | 0.81 |
76
+ | 0.4738 | 7.0 | 787 | 0.6880 | 0.78 |
77
+ | 0.2824 | 8.0 | 900 | 0.7893 | 0.73 |
78
+ | 0.3863 | 9.0 | 1012 | 0.5786 | 0.85 |
79
+ | 0.4061 | 10.0 | 1125 | 0.7070 | 0.81 |
80
+ | 0.1302 | 11.0 | 1237 | 0.5829 | 0.88 |
81
+ | 0.0326 | 12.0 | 1350 | 0.7896 | 0.8 |
82
+ | 0.0222 | 13.0 | 1462 | 0.8512 | 0.8 |
83
+ | 0.2248 | 13.94 | 1568 | 0.7770 | 0.82 |
84
+
85
+
86
+ ### Framework versions
87
+
88
+ - Transformers 4.31.0
89
+ - Pytorch 2.0.1+cu118
90
+ - Datasets 2.14.0
91
+ - Tokenizers 0.13.3