--- base_model: /home/co-ou1/rds/hpc-work/transformers/examples/pytorch/summarization/longt5_xl_gov_report_bp_10/checkpoint-477 tags: - generated_from_trainer datasets: - learn3r/gov_report_memsum_oracle metrics: - rouge model-index: - name: longt5_xl_gov_report_bp_10_continue results: - task: name: Summarization type: summarization dataset: name: learn3r/gov_report_memsum_oracle type: learn3r/gov_report_memsum_oracle metrics: - name: Rouge1 type: rouge value: 71.9439 --- # longt5_xl_gov_report_bp_10_continue This model is a fine-tuned version of [/home/co-ou1/rds/hpc-work/transformers/examples/pytorch/summarization/longt5_xl_gov_report_bp_10/checkpoint-477](https://huggingface.co//home/co-ou1/rds/hpc-work/transformers/examples/pytorch/summarization/longt5_xl_gov_report_bp_10/checkpoint-477) on the learn3r/gov_report_memsum_oracle dataset. It achieves the following results on the evaluation set: - Loss: 1.4878 - Rouge1: 71.9439 - Rouge2: 43.7031 - Rougel: 41.8301 - Rougelsum: 69.1853 - Gen Len: 833.0319 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 32 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant - num_epochs: 4.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:--------:| | 0.6226 | 1.0 | 68 | 1.4878 | 71.9439 | 43.7031 | 41.8301 | 69.1853 | 833.0319 | | 0.4983 | 1.99 | 136 | 1.5908 | 70.6191 | 43.2627 | 42.581 | 68.0871 | 627.5031 | | 0.4175 | 2.99 | 204 | 1.6407 | 71.6704 | 43.1655 | 41.9746 | 68.992 | 737.4352 | | 0.3958 | 3.99 | 272 | 1.8739 | 70.7685 | 42.5122 | 41.7454 | 68.0785 | 671.4938 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.3