ledmands commited on
Commit
f2b3a9d
1 Parent(s): 1671397

Updated README. Deleted scripts under development from main branch. They are located in development branch.

Browse files
CustomVideoRecorder/CustomVideoRecorder.py DELETED
File without changes
CustomVideoRecorder/__init.py__ DELETED
File without changes
README.md CHANGED
@@ -29,10 +29,12 @@ This will pull configuration information from the specified agent and save it in
29
  This will record a video of a specified agent being evaluated.
30
  Does not save any evaluation information.
31
  Currently in major development.
 
32
  ### plot_evaluations.py
33
  This will plot the evaluation data that was gathered during the training run of the specified agent using MatPlotLib.
34
  Charts can be saved to a directory of the user's choosing.
35
  Currently in major development.
 
36
  ### plot_improvement.py
37
  This plots the score of an agent averaged over all evaluation episodes during a training run. Also plots the
38
  standard deviation. Removes the lowest and highest episode scores from each evaluation.
 
29
  This will record a video of a specified agent being evaluated.
30
  Does not save any evaluation information.
31
  Currently in major development.
32
+ Currently located in development branch.
33
  ### plot_evaluations.py
34
  This will plot the evaluation data that was gathered during the training run of the specified agent using MatPlotLib.
35
  Charts can be saved to a directory of the user's choosing.
36
  Currently in major development.
37
+ Currently located in development branch.
38
  ### plot_improvement.py
39
  This plots the score of an agent averaged over all evaluation episodes during a training run. Also plots the
40
  standard deviation. Removes the lowest and highest episode scores from each evaluation.
plot_evaluations.py DELETED
@@ -1,60 +0,0 @@
1
- from numpy import load
2
- import numpy as np
3
- import matplotlib.pyplot as plt
4
- # import matplotlib.axes
5
-
6
- filepath = "agents/dqn_v2-7/evaluations.npz"
7
-
8
- data = load(filepath)
9
- lst = data.files # data.files lists the keys that are available for data
10
-
11
- # print('ep_lengths: \n', data['ep_lengths'])
12
-
13
- # results and ep_lengths are 2d arrays, because each evaluation is 5 episodes long.
14
- # I want to plot the average of each evaluation.
15
- print(data["results"])
16
- print()
17
- print(np.delete(np.sort(data["results"]), 0, 1))
18
- # for i in range(len(data["results"])):
19
- # print(np.average(data["results"][i]))
20
-
21
- '''
22
- # for each item in results, loop through the array and save the average
23
- avg_ep_result_arr = []
24
- for eval in data['results']:
25
- result_sum = 0
26
-
27
- for result in eval:
28
- result_sum = result_sum + result
29
-
30
- avg_ep_result = result_sum / len(eval)
31
- avg_ep_result_arr.append(avg_ep_result)
32
-
33
- avg_ep_len_arr = []
34
- for eval in data['ep_lengths']:
35
- max_len = 0
36
- y_limit = 0
37
- ep_len_sum = 0
38
-
39
- for ep_length in eval:
40
- ep_len_sum = ep_len_sum + ep_length
41
- if ep_length > max_len:
42
- max_len = ep_length
43
- if ep_length > y_limit and y_limit < max_len:
44
- y_limit = ep_length
45
-
46
- avg_ep_len = ep_len_sum / len(eval)
47
- avg_ep_len_arr.append(avg_ep_len)
48
- y_limit = y_limit * 1.9
49
-
50
-
51
- x = plt.plot(data['timesteps'], avg_ep_result_arr)
52
- # plt.bar(data['timesteps'], avg_ep_len_arr, width=10000)
53
- y = plt.plot(data['timesteps'], avg_ep_len_arr)
54
- plt.ylim(top=y_limit)
55
- # plt.ylabel("Avg ep score")
56
- # lineObjects = plt.plot(x, y)
57
- plt.legend(["avg ep result", "avg ep length"])
58
- plt.title("result and length over steps\nfilepath: " + filepath)
59
- plt.show()
60
- '''
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
record_video.py DELETED
@@ -1,54 +0,0 @@
1
- import gymnasium as gym
2
- from stable_baselines3 import DQN
3
- # from stable_baselines3.common.monitor import Monitor
4
- from stable_baselines3.common.vec_env import VecVideoRecorder, DummyVecEnv, VecEnv
5
-
6
- model_name = "agents/dqn_v2-8/best_model" # path to model, should be an argument
7
- env_id = "ALE/Pacman-v5"
8
- video_folder = "videos/"
9
- video_length = 10000 #steps by hard coding this, I can almost ensure only one episode is recorded...
10
-
11
- vec_env = DummyVecEnv([lambda: gym.make(env_id, render_mode="rgb_array")])
12
- model = DQN.load(model_name)
13
- # output: <stable_baselines3.common.vec_env.dummy_vec_env.DummyVecEnv object at 0x0000029974DC6550>
14
-
15
- # vec_env = gym.make(env_id, render_mode="rgb_array")
16
- # output <OrderEnforcing<PassiveEnvChecker<AtariEnv<ALE/Pacman-v5>>>>
17
-
18
- # vec_env = Monitor(gym.make(env_id, render_mode="rgb_array"))
19
-
20
- print("\n\n\n")
21
- print(vec_env)
22
- print("\n\n\n")
23
-
24
- obs = vec_env.reset()
25
-
26
-
27
- # Record the video starting at the first step
28
- vec_env = VecVideoRecorder(vec_env,
29
- video_folder,
30
- record_video_trigger=lambda x: x == 0,
31
- video_length=video_length,
32
- name_prefix="one-episode_v2-8_bestmodel"
33
- )
34
- # Once I make the environment, now I need to walk through it...???
35
- # I want to act according to the policy that has been trained
36
- vec_env.reset()
37
- print(vec_env)
38
- # for _ in range(video_length + 1):
39
- # action, states = model.predict(obs)
40
- # obs, _, _, _ = vec_env.step(action)
41
-
42
- # Instead of using the specified steps in a for loop
43
- # use a while loop to check if the episode has terminated
44
- # Stop recording when the episode ends
45
- end = True
46
- while end == True:
47
- action, states = model.predict(obs)
48
- obs, _, done, _ = vec_env.step(action)
49
- if done == True:
50
- print("exiting loop")
51
- end = False
52
- # # Save the video
53
-
54
- vec_env.close()