lemonfree002
commited on
Commit
•
5761847
1
Parent(s):
1f11a23
Training complete
Browse files
README.md
CHANGED
@@ -26,16 +26,16 @@ model-index:
|
|
26 |
metrics:
|
27 |
- name: Precision
|
28 |
type: precision
|
29 |
-
value: 0.
|
30 |
- name: Recall
|
31 |
type: recall
|
32 |
-
value: 0.
|
33 |
- name: F1
|
34 |
type: f1
|
35 |
-
value: 0.
|
36 |
- name: Accuracy
|
37 |
type: accuracy
|
38 |
-
value: 0.
|
39 |
---
|
40 |
|
41 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -45,11 +45,11 @@ should probably proofread and complete it, then remove this comment. -->
|
|
45 |
|
46 |
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
|
47 |
It achieves the following results on the evaluation set:
|
48 |
-
- Loss: 0.
|
49 |
-
- Precision: 0.
|
50 |
-
- Recall: 0.
|
51 |
-
- F1: 0.
|
52 |
-
- Accuracy: 0.
|
53 |
|
54 |
## Model description
|
55 |
|
@@ -80,9 +80,9 @@ The following hyperparameters were used during training:
|
|
80 |
|
81 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
82 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
83 |
-
| 0.
|
84 |
-
| 0.
|
85 |
-
| 0.
|
86 |
|
87 |
|
88 |
### Framework versions
|
|
|
26 |
metrics:
|
27 |
- name: Precision
|
28 |
type: precision
|
29 |
+
value: 0.9376244193762442
|
30 |
- name: Recall
|
31 |
type: recall
|
32 |
+
value: 0.9511948838774823
|
33 |
- name: F1
|
34 |
type: f1
|
35 |
+
value: 0.9443609022556392
|
36 |
- name: Accuracy
|
37 |
type: accuracy
|
38 |
+
value: 0.9862836286572084
|
39 |
---
|
40 |
|
41 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
45 |
|
46 |
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
|
47 |
It achieves the following results on the evaluation set:
|
48 |
+
- Loss: 0.0614
|
49 |
+
- Precision: 0.9376
|
50 |
+
- Recall: 0.9512
|
51 |
+
- F1: 0.9444
|
52 |
+
- Accuracy: 0.9863
|
53 |
|
54 |
## Model description
|
55 |
|
|
|
80 |
|
81 |
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
82 |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
83 |
+
| 0.0754 | 1.0 | 1756 | 0.0645 | 0.9080 | 0.9382 | 0.9229 | 0.9820 |
|
84 |
+
| 0.0346 | 2.0 | 3512 | 0.0661 | 0.9279 | 0.9460 | 0.9368 | 0.9846 |
|
85 |
+
| 0.0225 | 3.0 | 5268 | 0.0614 | 0.9376 | 0.9512 | 0.9444 | 0.9863 |
|
86 |
|
87 |
|
88 |
### Framework versions
|