lemonfree002 commited on
Commit
f175320
1 Parent(s): 334c17f

Training complete

Browse files
README.md CHANGED
@@ -26,16 +26,16 @@ model-index:
26
  metrics:
27
  - name: Precision
28
  type: precision
29
- value: 0.9282422646477946
30
  - name: Recall
31
  type: recall
32
- value: 0.9491753618310333
33
  - name: F1
34
  type: f1
35
- value: 0.9385921118322517
36
  - name: Accuracy
37
  type: accuracy
38
- value: 0.9860775887443339
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -45,11 +45,11 @@ should probably proofread and complete it, then remove this comment. -->
45
 
46
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
47
  It achieves the following results on the evaluation set:
48
- - Loss: 0.0606
49
- - Precision: 0.9282
50
- - Recall: 0.9492
51
- - F1: 0.9386
52
- - Accuracy: 0.9861
53
 
54
  ## Model description
55
 
@@ -80,9 +80,9 @@ The following hyperparameters were used during training:
80
 
81
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
82
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
83
- | 0.0776 | 1.0 | 1756 | 0.0661 | 0.8959 | 0.9312 | 0.9132 | 0.9813 |
84
- | 0.0343 | 2.0 | 3512 | 0.0644 | 0.9280 | 0.9451 | 0.9365 | 0.9852 |
85
- | 0.0202 | 3.0 | 5268 | 0.0606 | 0.9282 | 0.9492 | 0.9386 | 0.9861 |
86
 
87
 
88
  ### Framework versions
 
26
  metrics:
27
  - name: Precision
28
  type: precision
29
+ value: 0.9328493647912885
30
  - name: Recall
31
  type: recall
32
+ value: 0.9515314708852238
33
  - name: F1
34
  type: f1
35
+ value: 0.942097808881113
36
  - name: Accuracy
37
  type: accuracy
38
+ value: 0.9867398598928593
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
45
 
46
  This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset.
47
  It achieves the following results on the evaluation set:
48
+ - Loss: 0.0587
49
+ - Precision: 0.9328
50
+ - Recall: 0.9515
51
+ - F1: 0.9421
52
+ - Accuracy: 0.9867
53
 
54
  ## Model description
55
 
 
80
 
81
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
82
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
83
+ | 0.077 | 1.0 | 1756 | 0.0651 | 0.9058 | 0.9350 | 0.9202 | 0.9815 |
84
+ | 0.0347 | 2.0 | 3512 | 0.0612 | 0.9281 | 0.9475 | 0.9377 | 0.9856 |
85
+ | 0.0206 | 3.0 | 5268 | 0.0587 | 0.9328 | 0.9515 | 0.9421 | 0.9867 |
86
 
87
 
88
  ### Framework versions
runs/Sep09_21-36-40_d1b3d82733cd/events.out.tfevents.1725917805.d1b3d82733cd.307.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7508dc05842a13351f0a806fc4e28dbfef8871c09a9c7b32e4b65a3b01e49b18
3
- size 8295
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ea41a60a1835412d744a17df0bc32b7a6b9cfba70cd34c2be7e7cbdff33d178
3
+ size 9121