File size: 8,385 Bytes
8c649e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import torch
import torch.nn.functional as F
from dataclasses import dataclass

#import tiktoken

#tokenizer = tiktoken.get_encoding("gpt2")

import safetensors.torch

# Define the GPTConfig dataclass
@dataclass
class GPTConfig:
    vocab_size : int = 50304
    n_layer : int = 12
    n_head : int = 6 # head dim 128 suggested by @Grad62304977
    n_embd : int = 768

# Define the Rotary class
class Rotary(torch.nn.Module):

    def __init__(self, dim, base=10000):
        super().__init__()
        self.inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
        self.seq_len_cached = None
        self.cos_cached = None
        self.sin_cached = None

    def forward(self, x):
        seq_len = x.shape[1]
        if seq_len!= self.seq_len_cached:
            self.seq_len_cached = seq_len
            t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq)
            freqs = torch.outer(t, self.inv_freq).to(x.device)
            self.cos_cached = freqs.cos().bfloat16()
            self.sin_cached = freqs.sin().bfloat16()
        return self.cos_cached[None, :, None, :], self.sin_cached[None, :, None, :]

def apply_rotary_emb(x, cos, sin):
    assert x.ndim == 4 # multihead attention
    d = x.shape[3]//2
    x1 = x[..., :d]
    x2 = x[..., d:]
    y1 = x1 * cos + x2 * sin
    y2 = x1 * (-sin) + x2 * cos
    return torch.cat([y1, y2], 3).type_as(x)

# Define the CausalSelfAttention class
class CausalSelfAttention(torch.nn.Module):

    def __init__(self, config):
        super().__init__()
        self.n_head = config.n_head
        self.n_embd = config.n_embd
        self.head_dim = self.n_embd // self.n_head
        assert self.n_embd % self.n_head == 0
        self.c_q = torch.nn.Linear(self.n_embd, self.n_embd, bias=False)
        self.c_k = torch.nn.Linear(self.n_embd, self.n_embd, bias=False)
        self.c_v = torch.nn.Linear(self.n_embd, self.n_embd, bias=False)
        # output projection
        self.c_proj = torch.nn.Linear(self.n_embd, self.n_embd, bias=False)
        self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977
        self.rotary = Rotary(self.head_dim)
        self.lamb = torch.nn.Parameter(torch.tensor(0.5)) # @Grad62304977

    def forward(self, x, v1=None):
        B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
        q = self.c_q(x).view(B, T, self.n_head, self.head_dim)
        k = self.c_k(x).view(B, T, self.n_head, self.head_dim)
        v = self.c_v(x).view(B, T, self.n_head, self.head_dim)
        if v1 is None:
            v1 = v # This happens if we are in the first block. v needs to be accessed by subsequent blocks
        v = (1 - self.lamb) * v + self.lamb * v1.view_as(v) # @Grad62304977
        cos, sin = self.rotary(q)
        q, k = F.rms_norm(q, (q.size(-1),)), F.rms_norm(k, (k.size(-1),)) # QK norm suggested by @Grad62304977
        q, k = apply_rotary_emb(q, cos, sin), apply_rotary_emb(k, cos, sin)
        y = F.scaled_dot_product_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), is_causal=True)
        y = y.transpose(1, 2).contiguous().view_as(x) # re-assemble all head outputs side by side
        y = self.c_proj(y)
        return y, v1

# Define the MLP class
class MLP(torch.nn.Module):

    def __init__(self, config):
        super().__init__()
        self.c_fc    = torch.nn.Linear(config.n_embd, 4 * config.n_embd, bias=False)
        self.c_proj  = torch.nn.Linear(4 * config.n_embd, config.n_embd, bias=False)
        self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977

    def forward(self, x):
        x = self.c_fc(x)
        x = F.relu(x).square() # https://arxiv.org/abs/2109.08668v2; ~1-2% better than GELU; suggested by @SKYLINEZ007 and @Grad62304977
        x = self.c_proj(x)
        return x

# Define the Block class
class Block(torch.nn.Module):

    def __init__(self, config):
        super().__init__()
        self.attn = CausalSelfAttention(config)
        self.mlp = MLP(config)
        self.lambdas = torch.nn.Parameter(torch.tensor([1., 0.]))

    def forward(self, x, v1, x0):
        x = self.lambdas[0] * x + self.lambdas[1] * x0
        x1, v1 = self.attn(F.rms_norm(x, (x.size(-1),)), v1)
        x = x + x1
        x = x + self.mlp(F.rms_norm(x, (x.size(-1),)))
        return x, v1

# Define the GPT class
class GPT(torch.nn.Module):

    def __init__(self, config):
        super().__init__()
        self.config = config

        self.transformer = torch.nn.ModuleDict(dict(
            wte = torch.nn.Embedding(config.vocab_size, config.n_embd),
            h = torch.nn.ModuleList([Block(config) for _ in range(config.n_layer)]),
        ))
        self.lm_head = torch.nn.Linear(config.n_embd, config.vocab_size, bias=False)
        self.lm_head.weight.data.zero_() # @Grad62304977

    def forward(self, idx, targets=None, return_logits=True):

        # forward the GPT model itself
        x = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd)
        x = F.rms_norm(x, (x.size(-1),)) # @Grad62304977
        x0 = x
        v1 = None
        for block in self.transformer.h:
            x, v1 = block(x, v1, x0)
        x = F.rms_norm(x, (x.size(-1),))

        if targets is not None:
            # if we are given some desired targets also calculate the loss
            logits = self.lm_head(x)
            logits = 30 * torch.tanh(logits / 30) # @Grad62304977
            logits = logits.float() # use tf32/fp32 for logits
            loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1)
        else:
            # inference-time mini-optimization: only forward the lm_head on the very last position
            logits = self.lm_head(x[:, [-1], :]) # note: using list [-1] to preserve the time dim
            logits = 30 * torch.tanh(logits / 30) # @Grad62304977
            logits = logits.float() # use tf32/fp32 for logits
            loss = None

        # there are performance reasons why not returning logits is prudent, if not needed
        if not return_logits:
            logits = None

        return logits, loss
    
    def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None):
        """
        Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete
        the sequence max_new_tokens times, feeding the predictions back into the model each time.
        Most likely you'll want to make sure to be in model.eval() mode of operation for this.
        """
        for _ in range(max_new_tokens):
            # if the sequence context is growing too long we must crop it at block_size
            #idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:]
            # forward the model to get the logits for the index in the sequence
            logits, _ = self(idx)
            # pluck the logits at the final step and scale by desired temperature
            logits = logits[:, -1, :] / temperature
            # optionally crop the logits to only the top k options
            if top_k is not None:
                v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
                logits[logits < v[:, [-1]]] = -float('Inf')
            # apply softmax to convert logits to (normalized) probabilities
            probs = F.softmax(logits, dim=-1)
            # sample from the distribution
            idx_next = torch.multinomial(probs, num_samples=1)
            # append sampled index to the running sequence and continue
            idx = torch.cat((idx, idx_next), dim=1)

        return idx

# Load the trained parameters
def load_checkpoint(model, checkpoint_path):
    checkpoint = torch.load(checkpoint_path, map_location=torch.device('cpu'))
    model.load_state_dict(dict([(n.removeprefix("_orig_mod."), p) for n, p in checkpoint['model'].items()]))

# Run LLM inference
#def run_inference(model, input_ids):
#    input_ids = torch.tensor(input_ids).unsqueeze(0)
#    return model.generate(input_ids, 50)

# Main function
def main():
    config = GPTConfig()
    model = GPT(config)
    checkpoint_path = 'state_step003200.pt'  # replace with your checkpoint path
    load_checkpoint(model, checkpoint_path)
    model.eval()
    safetensors.torch.save_model(model, "nanogpt-speedrun-baseline.safetensors")


if __name__ == '__main__':
    main()