|
import torch |
|
import torch.nn.functional as F |
|
from dataclasses import dataclass |
|
|
|
|
|
|
|
|
|
|
|
import safetensors.torch |
|
|
|
|
|
@dataclass |
|
class GPTConfig: |
|
vocab_size : int = 50304 |
|
n_layer : int = 12 |
|
n_head : int = 6 |
|
n_embd : int = 768 |
|
|
|
|
|
class Rotary(torch.nn.Module): |
|
|
|
def __init__(self, dim, base=10000): |
|
super().__init__() |
|
self.inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim)) |
|
self.seq_len_cached = None |
|
self.cos_cached = None |
|
self.sin_cached = None |
|
|
|
def forward(self, x): |
|
seq_len = x.shape[1] |
|
if seq_len!= self.seq_len_cached: |
|
self.seq_len_cached = seq_len |
|
t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq) |
|
freqs = torch.outer(t, self.inv_freq).to(x.device) |
|
self.cos_cached = freqs.cos().bfloat16() |
|
self.sin_cached = freqs.sin().bfloat16() |
|
return self.cos_cached[None, :, None, :], self.sin_cached[None, :, None, :] |
|
|
|
def apply_rotary_emb(x, cos, sin): |
|
assert x.ndim == 4 |
|
d = x.shape[3]//2 |
|
x1 = x[..., :d] |
|
x2 = x[..., d:] |
|
y1 = x1 * cos + x2 * sin |
|
y2 = x1 * (-sin) + x2 * cos |
|
return torch.cat([y1, y2], 3).type_as(x) |
|
|
|
|
|
class CausalSelfAttention(torch.nn.Module): |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.n_head = config.n_head |
|
self.n_embd = config.n_embd |
|
self.head_dim = self.n_embd // self.n_head |
|
assert self.n_embd % self.n_head == 0 |
|
self.c_q = torch.nn.Linear(self.n_embd, self.n_embd, bias=False) |
|
self.c_k = torch.nn.Linear(self.n_embd, self.n_embd, bias=False) |
|
self.c_v = torch.nn.Linear(self.n_embd, self.n_embd, bias=False) |
|
|
|
self.c_proj = torch.nn.Linear(self.n_embd, self.n_embd, bias=False) |
|
self.c_proj.weight.data.zero_() |
|
self.rotary = Rotary(self.head_dim) |
|
self.lamb = torch.nn.Parameter(torch.tensor(0.5)) |
|
|
|
def forward(self, x, v1=None): |
|
B, T, C = x.size() |
|
q = self.c_q(x).view(B, T, self.n_head, self.head_dim) |
|
k = self.c_k(x).view(B, T, self.n_head, self.head_dim) |
|
v = self.c_v(x).view(B, T, self.n_head, self.head_dim) |
|
if v1 is None: |
|
v1 = v |
|
v = (1 - self.lamb) * v + self.lamb * v1.view_as(v) |
|
cos, sin = self.rotary(q) |
|
q, k = F.rms_norm(q, (q.size(-1),)), F.rms_norm(k, (k.size(-1),)) |
|
q, k = apply_rotary_emb(q, cos, sin), apply_rotary_emb(k, cos, sin) |
|
y = F.scaled_dot_product_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), is_causal=True) |
|
y = y.transpose(1, 2).contiguous().view_as(x) |
|
y = self.c_proj(y) |
|
return y, v1 |
|
|
|
|
|
class MLP(torch.nn.Module): |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.c_fc = torch.nn.Linear(config.n_embd, 4 * config.n_embd, bias=False) |
|
self.c_proj = torch.nn.Linear(4 * config.n_embd, config.n_embd, bias=False) |
|
self.c_proj.weight.data.zero_() |
|
|
|
def forward(self, x): |
|
x = self.c_fc(x) |
|
x = F.relu(x).square() |
|
x = self.c_proj(x) |
|
return x |
|
|
|
|
|
class Block(torch.nn.Module): |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.attn = CausalSelfAttention(config) |
|
self.mlp = MLP(config) |
|
self.lambdas = torch.nn.Parameter(torch.tensor([1., 0.])) |
|
|
|
def forward(self, x, v1, x0): |
|
x = self.lambdas[0] * x + self.lambdas[1] * x0 |
|
x1, v1 = self.attn(F.rms_norm(x, (x.size(-1),)), v1) |
|
x = x + x1 |
|
x = x + self.mlp(F.rms_norm(x, (x.size(-1),))) |
|
return x, v1 |
|
|
|
|
|
class GPT(torch.nn.Module): |
|
|
|
def __init__(self, config): |
|
super().__init__() |
|
self.config = config |
|
|
|
self.transformer = torch.nn.ModuleDict(dict( |
|
wte = torch.nn.Embedding(config.vocab_size, config.n_embd), |
|
h = torch.nn.ModuleList([Block(config) for _ in range(config.n_layer)]), |
|
)) |
|
self.lm_head = torch.nn.Linear(config.n_embd, config.vocab_size, bias=False) |
|
self.lm_head.weight.data.zero_() |
|
|
|
def forward(self, idx, targets=None, return_logits=True): |
|
|
|
|
|
x = self.transformer.wte(idx) |
|
x = F.rms_norm(x, (x.size(-1),)) |
|
x0 = x |
|
v1 = None |
|
for block in self.transformer.h: |
|
x, v1 = block(x, v1, x0) |
|
x = F.rms_norm(x, (x.size(-1),)) |
|
|
|
if targets is not None: |
|
|
|
logits = self.lm_head(x) |
|
logits = 30 * torch.tanh(logits / 30) |
|
logits = logits.float() |
|
loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1) |
|
else: |
|
|
|
logits = self.lm_head(x[:, [-1], :]) |
|
logits = 30 * torch.tanh(logits / 30) |
|
logits = logits.float() |
|
loss = None |
|
|
|
|
|
if not return_logits: |
|
logits = None |
|
|
|
return logits, loss |
|
|
|
def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None): |
|
""" |
|
Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete |
|
the sequence max_new_tokens times, feeding the predictions back into the model each time. |
|
Most likely you'll want to make sure to be in model.eval() mode of operation for this. |
|
""" |
|
for _ in range(max_new_tokens): |
|
|
|
|
|
|
|
logits, _ = self(idx) |
|
|
|
logits = logits[:, -1, :] / temperature |
|
|
|
if top_k is not None: |
|
v, _ = torch.topk(logits, min(top_k, logits.size(-1))) |
|
logits[logits < v[:, [-1]]] = -float('Inf') |
|
|
|
probs = F.softmax(logits, dim=-1) |
|
|
|
idx_next = torch.multinomial(probs, num_samples=1) |
|
|
|
idx = torch.cat((idx, idx_next), dim=1) |
|
|
|
return idx |
|
|
|
|
|
def load_checkpoint(model, checkpoint_path): |
|
checkpoint = torch.load(checkpoint_path, map_location=torch.device('cpu')) |
|
model.load_state_dict(dict([(n.removeprefix("_orig_mod."), p) for n, p in checkpoint['model'].items()])) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main(): |
|
config = GPTConfig() |
|
model = GPT(config) |
|
checkpoint_path = 'state_step003200.pt' |
|
load_checkpoint(model, checkpoint_path) |
|
model.eval() |
|
safetensors.torch.save_model(model, "nanogpt-speedrun-baseline.safetensors") |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|