# Coded by llama3 405b with some manual changes added # Quick and dirty test, not cleaned up import torch import torch.nn.functional as F from dataclasses import dataclass import tiktoken tokenizer = tiktoken.get_encoding("gpt2") # Define the GPTConfig dataclass @dataclass class GPTConfig: vocab_size : int = 50304 n_layer : int = 12 n_head : int = 6 # head dim 128 suggested by @Grad62304977 n_embd : int = 768 # Define the Rotary class class Rotary(torch.nn.Module): def __init__(self, dim, base=10000): super().__init__() self.inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim)) self.seq_len_cached = None self.cos_cached = None self.sin_cached = None def forward(self, x): seq_len = x.shape[1] if seq_len!= self.seq_len_cached: self.seq_len_cached = seq_len t = torch.arange(seq_len, device=x.device).type_as(self.inv_freq) freqs = torch.outer(t, self.inv_freq).to(x.device) self.cos_cached = freqs.cos().bfloat16() self.sin_cached = freqs.sin().bfloat16() return self.cos_cached[None, :, None, :], self.sin_cached[None, :, None, :] def apply_rotary_emb(x, cos, sin): assert x.ndim == 4 # multihead attention d = x.shape[3]//2 x1 = x[..., :d] x2 = x[..., d:] y1 = x1 * cos + x2 * sin y2 = x1 * (-sin) + x2 * cos return torch.cat([y1, y2], 3).type_as(x) # Define the CausalSelfAttention class class CausalSelfAttention(torch.nn.Module): def __init__(self, config): super().__init__() self.n_head = config.n_head self.n_embd = config.n_embd self.head_dim = self.n_embd // self.n_head assert self.n_embd % self.n_head == 0 self.c_q = torch.nn.Linear(self.n_embd, self.n_embd, bias=False) self.c_k = torch.nn.Linear(self.n_embd, self.n_embd, bias=False) self.c_v = torch.nn.Linear(self.n_embd, self.n_embd, bias=False) # output projection self.c_proj = torch.nn.Linear(self.n_embd, self.n_embd, bias=False) self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977 self.rotary = Rotary(self.head_dim) self.lamb = torch.nn.Parameter(torch.tensor(0.5)) # @Grad62304977 def forward(self, x, v1=None): B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd) q = self.c_q(x).view(B, T, self.n_head, self.head_dim) k = self.c_k(x).view(B, T, self.n_head, self.head_dim) v = self.c_v(x).view(B, T, self.n_head, self.head_dim) if v1 is None: v1 = v # This happens if we are in the first block. v needs to be accessed by subsequent blocks v = (1 - self.lamb) * v + self.lamb * v1.view_as(v) # @Grad62304977 cos, sin = self.rotary(q) q, k = F.rms_norm(q, (q.size(-1),)), F.rms_norm(k, (k.size(-1),)) # QK norm suggested by @Grad62304977 q, k = apply_rotary_emb(q, cos, sin), apply_rotary_emb(k, cos, sin) y = F.scaled_dot_product_attention(q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), is_causal=True) y = y.transpose(1, 2).contiguous().view_as(x) # re-assemble all head outputs side by side y = self.c_proj(y) return y, v1 # Define the MLP class class MLP(torch.nn.Module): def __init__(self, config): super().__init__() self.c_fc = torch.nn.Linear(config.n_embd, 4 * config.n_embd, bias=False) self.c_proj = torch.nn.Linear(4 * config.n_embd, config.n_embd, bias=False) self.c_proj.weight.data.zero_() # zero init suggested by @Grad62304977 def forward(self, x): x = self.c_fc(x) x = F.relu(x).square() # https://arxiv.org/abs/2109.08668v2; ~1-2% better than GELU; suggested by @SKYLINEZ007 and @Grad62304977 x = self.c_proj(x) return x # Define the Block class class Block(torch.nn.Module): def __init__(self, config): super().__init__() self.attn = CausalSelfAttention(config) self.mlp = MLP(config) self.lambdas = torch.nn.Parameter(torch.tensor([1., 0.])) def forward(self, x, v1, x0): x = self.lambdas[0] * x + self.lambdas[1] * x0 x1, v1 = self.attn(F.rms_norm(x, (x.size(-1),)), v1) x = x + x1 x = x + self.mlp(F.rms_norm(x, (x.size(-1),))) return x, v1 # Define the GPT class class GPT(torch.nn.Module): def __init__(self, config): super().__init__() self.config = config self.transformer = torch.nn.ModuleDict(dict( wte = torch.nn.Embedding(config.vocab_size, config.n_embd), h = torch.nn.ModuleList([Block(config) for _ in range(config.n_layer)]), )) self.lm_head = torch.nn.Linear(config.n_embd, config.vocab_size, bias=False) self.lm_head.weight.data.zero_() # @Grad62304977 def forward(self, idx, targets=None, return_logits=True): # forward the GPT model itself x = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd) x = F.rms_norm(x, (x.size(-1),)) # @Grad62304977 x0 = x v1 = None for block in self.transformer.h: x, v1 = block(x, v1, x0) x = F.rms_norm(x, (x.size(-1),)) if targets is not None: # if we are given some desired targets also calculate the loss logits = self.lm_head(x) logits = 30 * torch.tanh(logits / 30) # @Grad62304977 logits = logits.float() # use tf32/fp32 for logits loss = F.cross_entropy(logits.view(-1, logits.size(-1)), targets.view(-1), ignore_index=-1) else: # inference-time mini-optimization: only forward the lm_head on the very last position logits = self.lm_head(x[:, [-1], :]) # note: using list [-1] to preserve the time dim logits = 30 * torch.tanh(logits / 30) # @Grad62304977 logits = logits.float() # use tf32/fp32 for logits loss = None # there are performance reasons why not returning logits is prudent, if not needed if not return_logits: logits = None return logits, loss # From https://github.com/karpathy/llm.c/blob/master/train_gpt2.py def generate(self, idx, max_new_tokens, temperature=1.0, top_k=None): """ Take a conditioning sequence of indices idx (LongTensor of shape (b,t)) and complete the sequence max_new_tokens times, feeding the predictions back into the model each time. Most likely you'll want to make sure to be in model.eval() mode of operation for this. """ for _ in range(max_new_tokens): # if the sequence context is growing too long we must crop it at block_size #idx_cond = idx if idx.size(1) <= self.config.block_size else idx[:, -self.config.block_size:] # forward the model to get the logits for the index in the sequence logits, _ = self(idx) # pluck the logits at the final step and scale by desired temperature logits = logits[:, -1, :] / temperature # optionally crop the logits to only the top k options if top_k is not None: v, _ = torch.topk(logits, min(top_k, logits.size(-1))) logits[logits < v[:, [-1]]] = -float('Inf') # apply softmax to convert logits to (normalized) probabilities probs = F.softmax(logits, dim=-1) # sample from the distribution idx_next = torch.multinomial(probs, num_samples=1) # append sampled index to the running sequence and continue idx = torch.cat((idx, idx_next), dim=1) return idx # Load the trained parameters def load_checkpoint(model, checkpoint_path): checkpoint = torch.load(checkpoint_path, map_location=torch.device('cpu')) model.load_state_dict(dict([(n.removeprefix("_orig_mod."), p) for n, p in checkpoint['model'].items()])) # Due to loading from training checkpoint # Run LLM inference def run_inference(model, input_ids): input_ids = torch.tensor(input_ids).unsqueeze(0) return model.generate(input_ids, 50) # Main function def main(): config = GPTConfig() model = GPT(config) checkpoint_path = 'state_step003200.pt' # replace with your checkpoint path load_checkpoint(model, checkpoint_path) model.eval() prompt = "Once upon a time, in a magical kingdom, " input_ids = tokenizer.encode_ordinary(prompt) output_ids = run_inference(model, input_ids) #print(output_ids) tmp = output_ids.squeeze().tolist() #print(tmp) print(tokenizer.decode(tmp)) if __name__ == '__main__': main()