leobg commited on
Commit
365d7bf
1 Parent(s): e729098

leobg/deeva-modcat-seqclass-deberta-v1

Browse files
Files changed (1) hide show
  1. README.md +76 -0
README.md ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/deberta-v3-small
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - f1
9
+ - precision
10
+ - recall
11
+ model-index:
12
+ - name: deeva-modcat-seqclass-deberta-v1
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # deeva-modcat-seqclass-deberta-v1
20
+
21
+ This model is a fine-tuned version of [microsoft/deberta-v3-small](https://huggingface.co/microsoft/deberta-v3-small) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.6435
24
+ - Accuracy: 0.7161
25
+ - F1: 0.2922
26
+ - Precision: 0.1808
27
+ - Recall: 0.7619
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 2e-05
47
+ - train_batch_size: 24
48
+ - eval_batch_size: 24
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 2
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
57
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
58
+ | No log | 0.18 | 2 | 0.7148 | 0.4139 | 0.0476 | 0.0272 | 0.1905 |
59
+ | No log | 0.36 | 4 | 0.7027 | 0.4835 | 0.0408 | 0.0238 | 0.1429 |
60
+ | No log | 0.55 | 6 | 0.6917 | 0.5586 | 0.0474 | 0.0284 | 0.1429 |
61
+ | No log | 0.73 | 8 | 0.6817 | 0.5604 | 0.0476 | 0.0286 | 0.1429 |
62
+ | No log | 0.91 | 10 | 0.6727 | 0.5623 | 0.0478 | 0.0287 | 0.1429 |
63
+ | No log | 1.09 | 12 | 0.6648 | 0.6374 | 0.0571 | 0.0357 | 0.1429 |
64
+ | No log | 1.27 | 14 | 0.6578 | 0.6374 | 0.0571 | 0.0357 | 0.1429 |
65
+ | No log | 1.45 | 16 | 0.6521 | 0.6355 | 0.0569 | 0.0355 | 0.1429 |
66
+ | No log | 1.64 | 18 | 0.6477 | 0.6392 | 0.1005 | 0.0621 | 0.2619 |
67
+ | No log | 1.82 | 20 | 0.6448 | 0.7015 | 0.2419 | 0.1503 | 0.6190 |
68
+ | No log | 2.0 | 22 | 0.6435 | 0.7161 | 0.2922 | 0.1808 | 0.7619 |
69
+
70
+
71
+ ### Framework versions
72
+
73
+ - Transformers 4.33.2
74
+ - Pytorch 2.1.2+cu121
75
+ - Datasets 2.14.5
76
+ - Tokenizers 0.13.3