File size: 11,749 Bytes
6d504a5 2a4ff3a 6d504a5 2a4ff3a 6d504a5 2a4ff3a 6d504a5 2a4ff3a 6d504a5 2a4ff3a 6d504a5 2a4ff3a 6d504a5 2a4ff3a 6d504a5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
#%% imports
import pandas as pd
import time
from tqdm import tqdm
import torch
from torch.cuda.amp import autocast
import transformers
from transformers import WhisperFeatureExtractor, WhisperTokenizer, WhisperProcessor, WhisperForConditionalGeneration, GenerationConfig
from transformers import pipeline, AutomaticSpeechRecognitionPipeline
from peft import PeftModel, PeftConfig
import warnings
import jiwer
from jiwer.process import WordOutput
import pandas as pd
import numpy as np
from pathlib import Path
import os
import math
from decimal import InvalidOperation
import contractions
from whisper.normalizers.english import EnglishTextNormalizer
from num2words import num2words
import csv
import re
import string
#%% define functions
def ASRmanifest(
manifest_csv: str,
out_csv: str,
corpora_root: str,
model_path:str,
):
"""Run Whisper ASR on a dataset specified in a manifest
Args:
manifest_csv (str): path to manifest csv listing files to transcribe
out_csv (str):path to write output csv
corpora_root (str): root path where audio files are, inserted in place of $DATAROOT in manifest
model_path (str): path to model directory / huggingface model name
"""
df = pd.read_csv(manifest_csv,keep_default_na=False)
fieldnames = list(df.columns) + ['asr']
asr_pipeline=prepare_pipeline(
model_path=model_path,
generate_opts={'max_new_tokens':448,
'num_beams':1,#greedy
'repetition_penalty':1,
'do_sample':False
}
)
message = "This may take a while on CPU." if asr_pipeline.device.type=="cpu" else "Using GPU"
print(f'Running ASR for {len(df)} files. {message} ...')
compute_time=0
total_audio_dur=0
# get the start time
st = time.time()
with open(out_csv, 'w', newline='') as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=fieldnames,delimiter=',')
writer.writeheader()
for i,row in tqdm(df.iterrows(), total=df.shape[0]):
audiofile=row['wav'].replace('$DATAROOT',corpora_root)
with torch.no_grad():
with autocast():
try:
result = asr_pipeline(audiofile )
asrtext = result['text']
asr_pipeline.call_count = 0
except (FileNotFoundError, ValueError) as e:
print(f'SKIPPED: {audiofile}')
continue
row['asr']=asrtext
writer.writerow( row.to_dict())
et = time.time()
compute_time = (et-st)
print(f'...transcription complete in {compute_time:.1f} sec')
def prepare_pipeline(model_path, generate_opts):
"""Prepare a pipeline for ASR inference
Args:
model_path (str): path to model directory / huggingface model name
generate_opts (dict): options to pass to pipeline
Returns:
pipeline: ASR pipeline
"""
processor = WhisperProcessor.from_pretrained(model_path)
asr_pipeline = pipeline(
"automatic-speech-recognition",
model=model_path,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
generate_kwargs=generate_opts,
model_kwargs={"load_in_8bit": False},
device_map='auto')
return asr_pipeline
#%% WER evaluation functions
def get_normalizer(text_norm_method='isat'):
if text_norm_method=='whisper':
normalizer=whisper_norm_text_for_wer
elif text_norm_method=='whisper_keep_tags':
normalizer=EnglishTextNormalizer()
elif text_norm_method=='isat':
normalizer = norm_text_for_wer
elif text_norm_method=='levi':
normalizer = levi_norm_text_for_wer
else:
raise NotImplementedError(f'unrecognized normalizer method: {text_norm_method}')
return normalizer
def strip_punct(instr, keep_math=False):
newstr = ''
for word in instr.split():
if keep_math:
word=word.strip('!"#$&\',.:;<=>?@[\\]^_`{|}~')
else:
# delete punct from start and end of word
word = word.strip(string.punctuation)
# delete commas inside numbers
m = re.match(r'(\d*),(\d)', word)
if m != None:
word = word.replace(',', '')
# commas inside words become space
word = re.sub(",", " ", word)
# hyphens inside words become space
if keep_math:
pass
else:
word = re.sub("-", " ", word)
word = word.strip()
newstr += ' ' + word
newstr = newstr.strip()
return newstr
def remove_in_brackets(text):
# removes any clause in brackets or parens, and the brackets themselves
return re.sub("[\(\[\<].*?[\)\]\>]+", " ", text)
def caught_num2words(text):
# first do currency replacements #TODO: plurals vs singular
if '$' in text:
text = re.sub('\$([0-9]+)', '\g<1> dollars', text)
if '€' in text:
text = re.sub('\$([0-9]+)', '\g<1> euro', text)
if '£' in text:
text = re.sub('\$([0-9]+)', '\g<1> pounds', text)
if '%' in text:
text = re.sub('([0-9]+)\%', '\g<1> percent', text)
# strip punctuation
text=strip_punct(text, keep_math=True)
text=text.strip('*=/')
# catch strings that might be converted to infinity or NaN and return as is...
naughty_words = ['INF','Inf','inf','NAN','NaN', 'nan', 'NONE','None','none','Infinity','infinity']
if text in naughty_words:
return text
try:
if len(text.split()) > 1:
return ' '.join([caught_num2words(word) for word in text.split()])
else:
return num2words(text)
except (InvalidOperation, ValueError) as error:
return text
def spell_math(text):
# spell out mathematical expressions
# numerals preceded by hyphen become negative
text = re.sub('\-(\d+)', 'minus \g<1>', text)
text = re.sub('(\d+\s?)\-(\s?\d?)', '\g<1> minus \g<2>', text)
text = re.sub('(\w+\s+)\-(\s?\w+)', '\g<1> minus \g<2>', text) # need to be more careful with - as this could be a hyphenated word not minus
text = re.sub('(\w+\s?)\+(\s?\w+)', '\g<1> plus \g<2>', text)
text = re.sub('(\w+\s?)\*(\s?\w+)', '\g<1> times \g<2>', text)
text = re.sub('(\d+\s?)x(\s?\d)', '\g<1> times \g<2>', text) # need to be more careful with x as this could be a variable not times
text = re.sub('(\w+\s?)\/(\s?\w+)', '\g<1> divided by \g<2>', text)
text = re.sub('(\w+\s?)\=(\s?\w+)', '\g<1> equals \g<2>', text)
return text
def expand_contractions(str):
expanded_words = []
for wrd in str.split():
expanded_words.append(contractions.fix(wrd))
str = ' '.join(expanded_words)
return str
def norm_text_for_wer(text):
# function to format text or lists of text (e.g. asr, transcript) for wer computation.
# Converts from list to a single string and apply some text normalization operations
# note that the clean_REV_transcript function should be applied first to remove REV-specific keywords
# and extract text from docx format tables
if isinstance(text,list):
text = ' '.join(text)
text=str(text)
text = text.replace('\n',' ') # replace newline with space
text = remove_in_brackets(text) # removes non-spoken annotations such as [inaudible]
text = re.sub('%\w+','', text) # remove %HESITATION etc
text = ' '.join([caught_num2words(str) for str in text.split(' ')]) # spell out numbers
text = expand_contractions(text)
text = strip_punct(text)
text = text.lower()
text = re.sub('\s+',' ',text) # replace multiple space with single
return text
def levi_norm_text_for_wer(text):
# function to format text or lists of text (e.g. asr, transcript) for wer computation.
# specialized for math language
if isinstance(text,list):
text = ' '.join(text)
text=str(text)
text = text.replace('\n',' ') # replace newline with space
text = remove_in_brackets(text) # removes non-spoken annotations such as [inaudible]
text = re.sub('%\w+','', text) # remove %HESITATION etc
text = spell_math(text)
text = ' '.join([caught_num2words(str) for str in text.split(' ')]) # spell out numbers
text = expand_contractions(text)
text = strip_punct(text, keep_math=True)
text = text.lower()
text = re.sub('\s+',' ',text) # replace multiple space with single
return text
def whisper_norm_text_for_wer(text):
# function to format text for wer computation.
# uses Whisper normalizer after stripping corpus-specific special tags
if isinstance(text,list):
text = ' '.join(text)
text=str(text)
text = text.replace('\n',' ') # replace newline with space
text = re.sub('%\w+','', text) # remove %HESITATION etc
text = remove_in_brackets(text) # removes non-spoken annotations such as [inaudible]
normalizer = EnglishTextNormalizer()
text = normalizer(text)
return text
def wer_from_df(
df,
refcol='ref',
hypcol='hyp',
return_alignments=False,
normalise = True,
text_norm_method='levi',
printout=True):
"""Compute WER from a dataframe containing a ref col and a hyp col
WER is computed on the edit operation counts over the whole df,
not averaged over single utterances.
Args:
df (pandas DataFrame): containing rows per utterance
refcol (str, optional): column name containing reference transcript. Defaults to 'ref'.
hypcol (str, optional): column name containing hypothesis transcript. Defaults to 'hyp'.
return_alignments (bool, optional): Return full word-level alignments. Defaults to False.
normalise (bool, optional): Apply text normalisatin to ref and hyp (see norm_text_for_wer). Defaults to True.
printout (bool, optional): Print WER metrics. Defaults to True.
"""
normalizer=get_normalizer(text_norm_method)
refs=df[refcol].astype(str)
hyps = df[hypcol].astype(str)
if normalise:
refs=refs.apply(normalizer)
hyps=hyps.apply(normalizer)
#ID,ref,hyp,ref_norm,hyp_norm
if any(s == '' for s in list(refs)):
nonempty=refs.str.len()>0
refs=refs[nonempty]
hyps=hyps[nonempty]
# print(f'{sum(~nonempty)} empty references removed (after normalisation if applied)')
wer_meas = jiwer.compute_measures(list(refs), list(hyps))
if not return_alignments:
# remove alignments
del wer_meas['ops']
del wer_meas['truth']
del wer_meas['hypothesis']
wer_meas['word_count'] = wer_meas['substitutions']+wer_meas['deletions']+wer_meas['hits']
wer_meas['sub_rate'] = wer_meas['substitutions']/wer_meas['word_count']
wer_meas['del_rate'] = wer_meas['deletions']/wer_meas['word_count']
wer_meas['ins_rate'] = wer_meas['insertions']/wer_meas['word_count']
if printout:
for key in ['wer','sub_rate','del_rate','ins_rate']:
print((f"{key}={100*wer_meas[key]:.1f}" ))
print(f"word_count={int(wer_meas['word_count'])}")
return wer_meas
def wer_from_csv(
csv_path,
refcol='ref',
hypcol='hyp',
return_alignments=False,
normalise = True,
text_norm_method='levi' ,
printout=True):
res = pd.read_csv(csv_path).astype(str)
wer_meas=wer_from_df(res,
refcol=refcol,
hypcol=hypcol,
return_alignments=return_alignments,
normalise = normalise,
text_norm_method=text_norm_method,
printout=printout)
return wer_meas |