File size: 13,605 Bytes
6d504a5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
#%% imports
import pandas as pd
import time
from tqdm import tqdm
import torch
from torch.cuda.amp import autocast
import transformers
from transformers import WhisperFeatureExtractor, WhisperTokenizer, WhisperProcessor, WhisperForConditionalGeneration, GenerationConfig
from transformers import pipeline, AutomaticSpeechRecognitionPipeline
from peft import PeftModel, PeftConfig
import warnings
import jiwer
from jiwer.process import WordOutput
import pandas as pd
import numpy as np
from pathlib import Path
import os
import math
from decimal import InvalidOperation
import contractions
from whisper.normalizers.english import EnglishTextNormalizer
from num2words import num2words
import csv
import re
import string

#%% define functions
def ASRmanifest(
                manifest_csv: str,
                out_csv: str,
                corpora_root: str,
                model_path:str,
                ):
    """Run Whisper ASR on a dataset specified in a manifest
    Args:
        manifest_csv (str): path to manifest csv listing files to transcribe
        out_csv (str):path to write output csv
        corpora_root (str): root path where audio files are, inserted in place of $DATAROOT in manifest
        model_path (str): path to model directory / huggingface model name
    """

    df = pd.read_csv(manifest_csv,keep_default_na=False)
    fieldnames = list(df.columns) + ['asr']

    asr_pipeline=prepare_pipeline(
        model_path=model_path,
        generate_opts={'max_new_tokens':448,
                'num_beams':1,#greedy
                'repetition_penalty':1,
                'do_sample':False
                            }
                )

    message = "This may take a while on CPU." if asr_pipeline.device.type=="cpu" else "Using GPU"
    print(f'Running ASR for {len(df)} files. {message} ...')
    compute_time=0
    total_audio_dur=0
    # get the start time
    st = time.time()    

    with open(out_csv, 'w', newline='') as csvfile:
        writer = csv.DictWriter(csvfile, fieldnames=fieldnames,delimiter=',')
        writer.writeheader()
        for i,row in tqdm(df.iterrows(), total=df.shape[0]): 
            audiofile=row['wav'].replace('$DATAROOT',corpora_root)
            with torch.no_grad():
                with autocast():
                    try:
                        result = asr_pipeline(audiofile)
                        asrtext = result['text']
                    except (FileNotFoundError, ValueError) as e:
                        print(f'SKIPPED: {audiofile}')
                        continue
            row['asr']=asrtext
            writer.writerow( row.to_dict())
    et = time.time()
    compute_time = (et-st)
    print(f'...transcription complete in {compute_time:.1f} sec')

def load_model(
    model_path:str,
    language='english',
    use_int8 = False,
    device_map='auto'):    

    warnings.filterwarnings("ignore")
    transformers.utils.logging.set_verbosity_error()

    try:
        model = WhisperForConditionalGeneration.from_pretrained(
            model_path, 
            load_in_8bit=use_int8, 
            device_map=device_map,  
            use_cache=False,
            )
        try:
            processor=WhisperProcessor.from_pretrained(model_path, language=language, task="transcribe")
        except OSError:
            print('missing tokenizer and preprocessor config files in save dir, checking directory above...')
            processor=WhisperProcessor.from_pretrained(os.path.join(model_path,'..'), language=language, task="transcribe")

    except OSError as e:
        print(f'{e}: possibly missing model or config file in model path. Will check for adapter...')
            # check if PEFT
        if os.path.isdir(os.path.join(model_path , "adapter_model")):
            print('found adapter...loading PEFT model')
            # checkpoint dir needs adapter model subdir with adapter_model.bin and adapter_confg.json
            peft_config = PeftConfig.from_pretrained(os.path.join(model_path , "adapter_model"))
            print(f'...loading and merging LORA weights to base model {peft_config.base_model_name_or_path}')
            model = WhisperForConditionalGeneration.from_pretrained(peft_config.base_model_name_or_path, 
                load_in_8bit=use_int8, 
                device_map=device_map, 
                use_cache=False,
                )
            model = PeftModel.from_pretrained(model, os.path.join(model_path,"adapter_model"))
            model = model.merge_and_unload()
            processor = WhisperProcessor.from_pretrained(peft_config.base_model_name_or_path, language=language, task="transcribe")
        else:
            raise e
    model.eval() 
    return(model, processor)

def prepare_pipeline(model_path, generate_opts):
    """Prepare a pipeline for ASR inference
    Args:
        model_path (str): path to model directory / huggingface model name
        generate_opts (dict): options to pass to pipeline
    Returns:
        pipeline: ASR pipeline
    """
    model, processor = load_model(
        model_path=model_path)

    asr_pipeline = pipeline(
        "automatic-speech-recognition",
        model=model,
        tokenizer=processor.tokenizer,
        feature_extractor=processor.feature_extractor,
        generate_kwargs=generate_opts,
    )
    return asr_pipeline

#%% WER evaluation functions
def get_normalizer(text_norm_method='isat'):
    if text_norm_method=='whisper':
        normalizer=whisper_norm_text_for_wer
    elif text_norm_method=='whisper_keep_tags':
        normalizer=EnglishTextNormalizer()
    elif text_norm_method=='isat':
        normalizer = norm_text_for_wer
    elif text_norm_method=='levi':
        normalizer = levi_norm_text_for_wer
    else:
        raise NotImplementedError(f'unrecognized normalizer method: {text_norm_method}')
    return normalizer

def strip_punct(instr, keep_math=False):
    newstr = ''
    for word in instr.split():
        if keep_math:
            word=word.strip('!"#$&\',.:;<=>?@[\\]^_`{|}~')
        else:
            # delete punct from start and end of word
            word = word.strip(string.punctuation)
        # delete commas inside numbers
        m = re.match(r'(\d*),(\d)', word)
        if m != None:
            word = word.replace(',', '')
        # commas inside words become space
        word = re.sub(",", " ", word)
        # hyphens inside words become space
        if keep_math:
            pass
        else:
            word = re.sub("-", " ", word)
            word = word.strip()
        newstr += ' ' + word
    newstr = newstr.strip()
    return newstr

def remove_in_brackets(text):
    # removes any clause in brackets or parens, and the brackets themselves
    return re.sub("[\(\[\<].*?[\)\]\>]+", " ", text)

def caught_num2words(text):
    # first do currency replacements #TODO: plurals vs singular
    if '$' in text:
        text = re.sub('\$([0-9]+)', '\g<1> dollars', text)
    if '€' in text:
        text = re.sub('\$([0-9]+)', '\g<1> euro', text)
    if '£' in text:
        text = re.sub('\$([0-9]+)', '\g<1> pounds', text)
    if '%' in text:
        text = re.sub('([0-9]+)\%', '\g<1> percent', text)
    
    # strip punctuation 
    text=strip_punct(text, keep_math=True)
    text=text.strip('*=/')
    # catch strings that might be converted to infinity or NaN and return as is... 
    naughty_words = ['INF','Inf','inf','NAN','NaN', 'nan', 'NONE','None','none','Infinity','infinity']
    if text in naughty_words:
        return text
    try:
        if len(text.split()) > 1:
            return ' '.join([caught_num2words(word) for word in text.split()])
        else:
            return num2words(text)
    except (InvalidOperation, ValueError) as error:
        return text

def spell_math(text):
    # spell out mathematical expressions
    # numerals preceded by hyphen become negative
    text = re.sub('\-(\d+)', 'minus \g<1>', text)
    text = re.sub('(\d+\s?)\-(\s?\d?)', '\g<1> minus \g<2>', text)
    text = re.sub('(\w+\s+)\-(\s?\w+)', '\g<1> minus \g<2>', text) # need to be more careful with - as this could be a hyphenated word not minus
    text = re.sub('(\w+\s?)\+(\s?\w+)', '\g<1> plus \g<2>', text)
    text = re.sub('(\w+\s?)\*(\s?\w+)', '\g<1> times \g<2>', text)
    text = re.sub('(\d+\s?)x(\s?\d)', '\g<1> times \g<2>', text) # need to be more careful with x as this could be a variable not times
    text = re.sub('(\w+\s?)\/(\s?\w+)', '\g<1> divided by \g<2>', text)
    text = re.sub('(\w+\s?)\=(\s?\w+)', '\g<1> equals \g<2>', text)
    return text
    
def expand_contractions(str):
        expanded_words = []
        for wrd in str.split():
            expanded_words.append(contractions.fix(wrd))
        str = ' '.join(expanded_words)
        return str

def norm_text_for_wer(text):
    # function to format text or lists of text (e.g. asr, transcript) for wer computation. 
    # Converts from list to a single string and apply some text normalization operations
    # note that the clean_REV_transcript function should be applied first to remove REV-specific keywords 
    # and extract text from docx format tables
    
    if isinstance(text,list):
        text = ' '.join(text)
    text=str(text)
    text = text.replace('\n',' ') # replace newline with space
    text = remove_in_brackets(text) # removes non-spoken annotations such as [inaudible]
    text = re.sub('%\w+','', text) # remove %HESITATION etc
    text = ' '.join([caught_num2words(str) for str in text.split(' ')]) # spell out numbers
    text = expand_contractions(text)
    text = strip_punct(text)
    text = text.lower()
    text = re.sub('\s+',' ',text) # replace multiple space with single
    return text

def levi_norm_text_for_wer(text):
    # function to format text or lists of text (e.g. asr, transcript) for wer computation. 
    # specialized for math language
    
    if isinstance(text,list):
        text = ' '.join(text)
    text=str(text)
    text = text.replace('\n',' ') # replace newline with space
    text = remove_in_brackets(text) # removes non-spoken annotations such as [inaudible]
    text = re.sub('%\w+','', text) # remove %HESITATION etc
    text = spell_math(text)
    text = ' '.join([caught_num2words(str) for str in text.split(' ')]) # spell out numbers
    text = expand_contractions(text)
    text = strip_punct(text, keep_math=True)
    text = text.lower()
    text = re.sub('\s+',' ',text) # replace multiple space with single
    return text

def whisper_norm_text_for_wer(text):
    # function to format text for wer computation. 
    # uses Whisper normalizer after stripping corpus-specific special tags
    
    if isinstance(text,list):
        text = ' '.join(text)
    text=str(text)
    text = text.replace('\n',' ') # replace newline with space
    text = re.sub('%\w+','', text) # remove %HESITATION etc
    text = remove_in_brackets(text) # removes non-spoken annotations such as [inaudible]
    normalizer = EnglishTextNormalizer()
    text = normalizer(text)
    return text

def wer_from_df(
    df,
    refcol='ref', 
    hypcol='hyp', 
    return_alignments=False, 
    normalise = True, 
    text_norm_method='isat',
    printout=True):
    """Compute WER from a dataframe containing a ref col and a hyp col
    WER is computed on the edit operation counts over the whole df, 
    not averaged over single utterances.

    Args:
        df (pandas DataFrame): containing rows per utterance
        refcol (str, optional): column name containing reference transcript. Defaults to 'ref'.
        hypcol (str, optional): column name containing hypothesis transcript. Defaults to 'hyp'.
        return_alignments (bool, optional): Return full word-level alignments. Defaults to False.
        normalise (bool, optional): Apply text normalisatin to ref and hyp (see norm_text_for_wer). Defaults to True.
        printout (bool, optional): Print WER metrics. Defaults to True.
    """    
    normalizer=get_normalizer(text_norm_method)

    refs=df[refcol].astype(str)
    hyps = df[hypcol].astype(str)
    if normalise:
        refs=refs.apply(normalizer)
        hyps=hyps.apply(normalizer)

    #ID,ref,hyp,ref_norm,hyp_norm
    if any(s == '' for s in list(refs)):
        nonempty=refs.str.len()>0
        refs=refs[nonempty]
        hyps=hyps[nonempty]
        # print(f'{sum(~nonempty)} empty references removed (after normalisation if applied)')
    wer_meas = jiwer.compute_measures(list(refs), list(hyps))

    if not return_alignments:
        # remove alignments 
        del wer_meas['ops']
        del wer_meas['truth']
        del wer_meas['hypothesis']
    wer_meas['word_count'] = wer_meas['substitutions']+wer_meas['deletions']+wer_meas['hits']
    wer_meas['sub_rate'] = wer_meas['substitutions']/wer_meas['word_count'] 
    wer_meas['del_rate'] = wer_meas['deletions']/wer_meas['word_count'] 
    wer_meas['ins_rate'] = wer_meas['insertions']/wer_meas['word_count'] 

    if printout:
        for key in ['wer','sub_rate','del_rate','ins_rate']:
            print((f"{key}={100*wer_meas[key]:.1f}" ))
        print(f"word_count={int(wer_meas['word_count'])}")
    return wer_meas


def wer_from_csv(
    csv_path, 
    refcol='ref', 
    hypcol='hyp', 
    return_alignments=False, 
    normalise = True,
    text_norm_method='isat' ,
    printout=True):

    res = pd.read_csv(csv_path).astype(str)

    wer_meas=wer_from_df(res,
        refcol=refcol, 
        hypcol=hypcol, 
        return_alignments=return_alignments, 
        normalise = normalise, 
        text_norm_method=text_norm_method,
        printout=printout)
    return wer_meas