Create benchmark_utils.py
Browse files- benchmark_utils.py +353 -0
benchmark_utils.py
ADDED
@@ -0,0 +1,353 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#%% imports
|
2 |
+
import pandas as pd
|
3 |
+
import time
|
4 |
+
from tqdm import tqdm
|
5 |
+
import torch
|
6 |
+
from torch.cuda.amp import autocast
|
7 |
+
import transformers
|
8 |
+
from transformers import WhisperFeatureExtractor, WhisperTokenizer, WhisperProcessor, WhisperForConditionalGeneration, GenerationConfig
|
9 |
+
from transformers import pipeline, AutomaticSpeechRecognitionPipeline
|
10 |
+
from peft import PeftModel, PeftConfig
|
11 |
+
import warnings
|
12 |
+
import jiwer
|
13 |
+
from jiwer.process import WordOutput
|
14 |
+
import pandas as pd
|
15 |
+
import numpy as np
|
16 |
+
from pathlib import Path
|
17 |
+
import os
|
18 |
+
import math
|
19 |
+
from decimal import InvalidOperation
|
20 |
+
import contractions
|
21 |
+
from whisper.normalizers.english import EnglishTextNormalizer
|
22 |
+
from num2words import num2words
|
23 |
+
import csv
|
24 |
+
import re
|
25 |
+
import string
|
26 |
+
|
27 |
+
#%% define functions
|
28 |
+
def ASRmanifest(
|
29 |
+
manifest_csv: str,
|
30 |
+
out_csv: str,
|
31 |
+
corpora_root: str,
|
32 |
+
model_path:str,
|
33 |
+
):
|
34 |
+
"""Run Whisper ASR on a dataset specified in a manifest
|
35 |
+
Args:
|
36 |
+
manifest_csv (str): path to manifest csv listing files to transcribe
|
37 |
+
out_csv (str):path to write output csv
|
38 |
+
corpora_root (str): root path where audio files are, inserted in place of $DATAROOT in manifest
|
39 |
+
model_path (str): path to model directory / huggingface model name
|
40 |
+
"""
|
41 |
+
|
42 |
+
df = pd.read_csv(manifest_csv,keep_default_na=False)
|
43 |
+
fieldnames = list(df.columns) + ['asr']
|
44 |
+
|
45 |
+
asr_pipeline=prepare_pipeline(
|
46 |
+
model_path=model_path,
|
47 |
+
generate_opts={'max_new_tokens':448,
|
48 |
+
'num_beams':1,#greedy
|
49 |
+
'repetition_penalty':1,
|
50 |
+
'do_sample':False
|
51 |
+
}
|
52 |
+
)
|
53 |
+
|
54 |
+
message = "This may take a while on CPU." if asr_pipeline.device.type=="cpu" else "Using GPU"
|
55 |
+
print(f'Running ASR for {len(df)} files. {message} ...')
|
56 |
+
compute_time=0
|
57 |
+
total_audio_dur=0
|
58 |
+
# get the start time
|
59 |
+
st = time.time()
|
60 |
+
|
61 |
+
with open(out_csv, 'w', newline='') as csvfile:
|
62 |
+
writer = csv.DictWriter(csvfile, fieldnames=fieldnames,delimiter=',')
|
63 |
+
writer.writeheader()
|
64 |
+
for i,row in tqdm(df.iterrows(), total=df.shape[0]):
|
65 |
+
audiofile=row['wav'].replace('$DATAROOT',corpora_root)
|
66 |
+
with torch.no_grad():
|
67 |
+
with autocast():
|
68 |
+
try:
|
69 |
+
result = asr_pipeline(audiofile)
|
70 |
+
asrtext = result['text']
|
71 |
+
except (FileNotFoundError, ValueError) as e:
|
72 |
+
print(f'SKIPPED: {audiofile}')
|
73 |
+
continue
|
74 |
+
row['asr']=asrtext
|
75 |
+
writer.writerow( row.to_dict())
|
76 |
+
et = time.time()
|
77 |
+
compute_time = (et-st)
|
78 |
+
print(f'...transcription complete in {compute_time:.1f} sec')
|
79 |
+
|
80 |
+
def load_model(
|
81 |
+
model_path:str,
|
82 |
+
language='english',
|
83 |
+
use_int8 = False,
|
84 |
+
device_map='auto'):
|
85 |
+
|
86 |
+
warnings.filterwarnings("ignore")
|
87 |
+
transformers.utils.logging.set_verbosity_error()
|
88 |
+
|
89 |
+
try:
|
90 |
+
model = WhisperForConditionalGeneration.from_pretrained(
|
91 |
+
model_path,
|
92 |
+
load_in_8bit=use_int8,
|
93 |
+
device_map=device_map,
|
94 |
+
use_cache=False,
|
95 |
+
)
|
96 |
+
try:
|
97 |
+
processor=WhisperProcessor.from_pretrained(model_path, language=language, task="transcribe")
|
98 |
+
except OSError:
|
99 |
+
print('missing tokenizer and preprocessor config files in save dir, checking directory above...')
|
100 |
+
processor=WhisperProcessor.from_pretrained(os.path.join(model_path,'..'), language=language, task="transcribe")
|
101 |
+
|
102 |
+
except OSError as e:
|
103 |
+
print(f'{e}: possibly missing model or config file in model path. Will check for adapter...')
|
104 |
+
# check if PEFT
|
105 |
+
if os.path.isdir(os.path.join(model_path , "adapter_model")):
|
106 |
+
print('found adapter...loading PEFT model')
|
107 |
+
# checkpoint dir needs adapter model subdir with adapter_model.bin and adapter_confg.json
|
108 |
+
peft_config = PeftConfig.from_pretrained(os.path.join(model_path , "adapter_model"))
|
109 |
+
print(f'...loading and merging LORA weights to base model {peft_config.base_model_name_or_path}')
|
110 |
+
model = WhisperForConditionalGeneration.from_pretrained(peft_config.base_model_name_or_path,
|
111 |
+
load_in_8bit=use_int8,
|
112 |
+
device_map=device_map,
|
113 |
+
use_cache=False,
|
114 |
+
)
|
115 |
+
model = PeftModel.from_pretrained(model, os.path.join(model_path,"adapter_model"))
|
116 |
+
model = model.merge_and_unload()
|
117 |
+
processor = WhisperProcessor.from_pretrained(peft_config.base_model_name_or_path, language=language, task="transcribe")
|
118 |
+
else:
|
119 |
+
raise e
|
120 |
+
model.eval()
|
121 |
+
return(model, processor)
|
122 |
+
|
123 |
+
def prepare_pipeline(model_path, generate_opts):
|
124 |
+
"""Prepare a pipeline for ASR inference
|
125 |
+
Args:
|
126 |
+
model_path (str): path to model directory / huggingface model name
|
127 |
+
generate_opts (dict): options to pass to pipeline
|
128 |
+
Returns:
|
129 |
+
pipeline: ASR pipeline
|
130 |
+
"""
|
131 |
+
model, processor = load_model(
|
132 |
+
model_path=model_path)
|
133 |
+
|
134 |
+
asr_pipeline = pipeline(
|
135 |
+
"automatic-speech-recognition",
|
136 |
+
model=model,
|
137 |
+
tokenizer=processor.tokenizer,
|
138 |
+
feature_extractor=processor.feature_extractor,
|
139 |
+
generate_kwargs=generate_opts,
|
140 |
+
)
|
141 |
+
return asr_pipeline
|
142 |
+
|
143 |
+
#%% WER evaluation functions
|
144 |
+
def get_normalizer(text_norm_method='isat'):
|
145 |
+
if text_norm_method=='whisper':
|
146 |
+
normalizer=whisper_norm_text_for_wer
|
147 |
+
elif text_norm_method=='whisper_keep_tags':
|
148 |
+
normalizer=EnglishTextNormalizer()
|
149 |
+
elif text_norm_method=='isat':
|
150 |
+
normalizer = norm_text_for_wer
|
151 |
+
elif text_norm_method=='levi':
|
152 |
+
normalizer = levi_norm_text_for_wer
|
153 |
+
else:
|
154 |
+
raise NotImplementedError(f'unrecognized normalizer method: {text_norm_method}')
|
155 |
+
return normalizer
|
156 |
+
|
157 |
+
def strip_punct(instr, keep_math=False):
|
158 |
+
newstr = ''
|
159 |
+
for word in instr.split():
|
160 |
+
if keep_math:
|
161 |
+
word=word.strip('!"#$&\',.:;<=>?@[\\]^_`{|}~')
|
162 |
+
else:
|
163 |
+
# delete punct from start and end of word
|
164 |
+
word = word.strip(string.punctuation)
|
165 |
+
# delete commas inside numbers
|
166 |
+
m = re.match(r'(\d*),(\d)', word)
|
167 |
+
if m != None:
|
168 |
+
word = word.replace(',', '')
|
169 |
+
# commas inside words become space
|
170 |
+
word = re.sub(",", " ", word)
|
171 |
+
# hyphens inside words become space
|
172 |
+
if keep_math:
|
173 |
+
pass
|
174 |
+
else:
|
175 |
+
word = re.sub("-", " ", word)
|
176 |
+
word = word.strip()
|
177 |
+
newstr += ' ' + word
|
178 |
+
newstr = newstr.strip()
|
179 |
+
return newstr
|
180 |
+
|
181 |
+
def remove_in_brackets(text):
|
182 |
+
# removes any clause in brackets or parens, and the brackets themselves
|
183 |
+
return re.sub("[\(\[\<].*?[\)\]\>]+", " ", text)
|
184 |
+
|
185 |
+
def caught_num2words(text):
|
186 |
+
# first do currency replacements #TODO: plurals vs singular
|
187 |
+
if '$' in text:
|
188 |
+
text = re.sub('\$([0-9]+)', '\g<1> dollars', text)
|
189 |
+
if '€' in text:
|
190 |
+
text = re.sub('\$([0-9]+)', '\g<1> euro', text)
|
191 |
+
if '£' in text:
|
192 |
+
text = re.sub('\$([0-9]+)', '\g<1> pounds', text)
|
193 |
+
if '%' in text:
|
194 |
+
text = re.sub('([0-9]+)\%', '\g<1> percent', text)
|
195 |
+
|
196 |
+
# strip punctuation
|
197 |
+
text=strip_punct(text, keep_math=True)
|
198 |
+
text=text.strip('*=/')
|
199 |
+
# catch strings that might be converted to infinity or NaN and return as is...
|
200 |
+
naughty_words = ['INF','Inf','inf','NAN','NaN', 'nan', 'NONE','None','none','Infinity','infinity']
|
201 |
+
if text in naughty_words:
|
202 |
+
return text
|
203 |
+
try:
|
204 |
+
if len(text.split()) > 1:
|
205 |
+
return ' '.join([caught_num2words(word) for word in text.split()])
|
206 |
+
else:
|
207 |
+
return num2words(text)
|
208 |
+
except (InvalidOperation, ValueError) as error:
|
209 |
+
return text
|
210 |
+
|
211 |
+
def spell_math(text):
|
212 |
+
# spell out mathematical expressions
|
213 |
+
# numerals preceded by hyphen become negative
|
214 |
+
text = re.sub('\-(\d+)', 'minus \g<1>', text)
|
215 |
+
text = re.sub('(\d+\s?)\-(\s?\d?)', '\g<1> minus \g<2>', text)
|
216 |
+
text = re.sub('(\w+\s+)\-(\s?\w+)', '\g<1> minus \g<2>', text) # need to be more careful with - as this could be a hyphenated word not minus
|
217 |
+
text = re.sub('(\w+\s?)\+(\s?\w+)', '\g<1> plus \g<2>', text)
|
218 |
+
text = re.sub('(\w+\s?)\*(\s?\w+)', '\g<1> times \g<2>', text)
|
219 |
+
text = re.sub('(\d+\s?)x(\s?\d)', '\g<1> times \g<2>', text) # need to be more careful with x as this could be a variable not times
|
220 |
+
text = re.sub('(\w+\s?)\/(\s?\w+)', '\g<1> divided by \g<2>', text)
|
221 |
+
text = re.sub('(\w+\s?)\=(\s?\w+)', '\g<1> equals \g<2>', text)
|
222 |
+
return text
|
223 |
+
|
224 |
+
def expand_contractions(str):
|
225 |
+
expanded_words = []
|
226 |
+
for wrd in str.split():
|
227 |
+
expanded_words.append(contractions.fix(wrd))
|
228 |
+
str = ' '.join(expanded_words)
|
229 |
+
return str
|
230 |
+
|
231 |
+
def norm_text_for_wer(text):
|
232 |
+
# function to format text or lists of text (e.g. asr, transcript) for wer computation.
|
233 |
+
# Converts from list to a single string and apply some text normalization operations
|
234 |
+
# note that the clean_REV_transcript function should be applied first to remove REV-specific keywords
|
235 |
+
# and extract text from docx format tables
|
236 |
+
|
237 |
+
if isinstance(text,list):
|
238 |
+
text = ' '.join(text)
|
239 |
+
text=str(text)
|
240 |
+
text = text.replace('\n',' ') # replace newline with space
|
241 |
+
text = remove_in_brackets(text) # removes non-spoken annotations such as [inaudible]
|
242 |
+
text = re.sub('%\w+','', text) # remove %HESITATION etc
|
243 |
+
text = ' '.join([caught_num2words(str) for str in text.split(' ')]) # spell out numbers
|
244 |
+
text = expand_contractions(text)
|
245 |
+
text = strip_punct(text)
|
246 |
+
text = text.lower()
|
247 |
+
text = re.sub('\s+',' ',text) # replace multiple space with single
|
248 |
+
return text
|
249 |
+
|
250 |
+
def levi_norm_text_for_wer(text):
|
251 |
+
# function to format text or lists of text (e.g. asr, transcript) for wer computation.
|
252 |
+
# specialized for math language
|
253 |
+
|
254 |
+
if isinstance(text,list):
|
255 |
+
text = ' '.join(text)
|
256 |
+
text=str(text)
|
257 |
+
text = text.replace('\n',' ') # replace newline with space
|
258 |
+
text = remove_in_brackets(text) # removes non-spoken annotations such as [inaudible]
|
259 |
+
text = re.sub('%\w+','', text) # remove %HESITATION etc
|
260 |
+
text = spell_math(text)
|
261 |
+
text = ' '.join([caught_num2words(str) for str in text.split(' ')]) # spell out numbers
|
262 |
+
text = expand_contractions(text)
|
263 |
+
text = strip_punct(text, keep_math=True)
|
264 |
+
text = text.lower()
|
265 |
+
text = re.sub('\s+',' ',text) # replace multiple space with single
|
266 |
+
return text
|
267 |
+
|
268 |
+
def whisper_norm_text_for_wer(text):
|
269 |
+
# function to format text for wer computation.
|
270 |
+
# uses Whisper normalizer after stripping corpus-specific special tags
|
271 |
+
|
272 |
+
if isinstance(text,list):
|
273 |
+
text = ' '.join(text)
|
274 |
+
text=str(text)
|
275 |
+
text = text.replace('\n',' ') # replace newline with space
|
276 |
+
text = re.sub('%\w+','', text) # remove %HESITATION etc
|
277 |
+
text = remove_in_brackets(text) # removes non-spoken annotations such as [inaudible]
|
278 |
+
normalizer = EnglishTextNormalizer()
|
279 |
+
text = normalizer(text)
|
280 |
+
return text
|
281 |
+
|
282 |
+
def wer_from_df(
|
283 |
+
df,
|
284 |
+
refcol='ref',
|
285 |
+
hypcol='hyp',
|
286 |
+
return_alignments=False,
|
287 |
+
normalise = True,
|
288 |
+
text_norm_method='isat',
|
289 |
+
printout=True):
|
290 |
+
"""Compute WER from a dataframe containing a ref col and a hyp col
|
291 |
+
WER is computed on the edit operation counts over the whole df,
|
292 |
+
not averaged over single utterances.
|
293 |
+
|
294 |
+
Args:
|
295 |
+
df (pandas DataFrame): containing rows per utterance
|
296 |
+
refcol (str, optional): column name containing reference transcript. Defaults to 'ref'.
|
297 |
+
hypcol (str, optional): column name containing hypothesis transcript. Defaults to 'hyp'.
|
298 |
+
return_alignments (bool, optional): Return full word-level alignments. Defaults to False.
|
299 |
+
normalise (bool, optional): Apply text normalisatin to ref and hyp (see norm_text_for_wer). Defaults to True.
|
300 |
+
printout (bool, optional): Print WER metrics. Defaults to True.
|
301 |
+
"""
|
302 |
+
normalizer=get_normalizer(text_norm_method)
|
303 |
+
|
304 |
+
refs=df[refcol].astype(str)
|
305 |
+
hyps = df[hypcol].astype(str)
|
306 |
+
if normalise:
|
307 |
+
refs=refs.apply(normalizer)
|
308 |
+
hyps=hyps.apply(normalizer)
|
309 |
+
|
310 |
+
#ID,ref,hyp,ref_norm,hyp_norm
|
311 |
+
if any(s == '' for s in list(refs)):
|
312 |
+
nonempty=refs.str.len()>0
|
313 |
+
refs=refs[nonempty]
|
314 |
+
hyps=hyps[nonempty]
|
315 |
+
# print(f'{sum(~nonempty)} empty references removed (after normalisation if applied)')
|
316 |
+
wer_meas = jiwer.compute_measures(list(refs), list(hyps))
|
317 |
+
|
318 |
+
if not return_alignments:
|
319 |
+
# remove alignments
|
320 |
+
del wer_meas['ops']
|
321 |
+
del wer_meas['truth']
|
322 |
+
del wer_meas['hypothesis']
|
323 |
+
wer_meas['word_count'] = wer_meas['substitutions']+wer_meas['deletions']+wer_meas['hits']
|
324 |
+
wer_meas['sub_rate'] = wer_meas['substitutions']/wer_meas['word_count']
|
325 |
+
wer_meas['del_rate'] = wer_meas['deletions']/wer_meas['word_count']
|
326 |
+
wer_meas['ins_rate'] = wer_meas['insertions']/wer_meas['word_count']
|
327 |
+
|
328 |
+
if printout:
|
329 |
+
for key in ['wer','sub_rate','del_rate','ins_rate']:
|
330 |
+
print((f"{key}={100*wer_meas[key]:.1f}" ))
|
331 |
+
print(f"word_count={int(wer_meas['word_count'])}")
|
332 |
+
return wer_meas
|
333 |
+
|
334 |
+
|
335 |
+
def wer_from_csv(
|
336 |
+
csv_path,
|
337 |
+
refcol='ref',
|
338 |
+
hypcol='hyp',
|
339 |
+
return_alignments=False,
|
340 |
+
normalise = True,
|
341 |
+
text_norm_method='isat' ,
|
342 |
+
printout=True):
|
343 |
+
|
344 |
+
res = pd.read_csv(csv_path).astype(str)
|
345 |
+
|
346 |
+
wer_meas=wer_from_df(res,
|
347 |
+
refcol=refcol,
|
348 |
+
hypcol=hypcol,
|
349 |
+
return_alignments=return_alignments,
|
350 |
+
normalise = normalise,
|
351 |
+
text_norm_method=text_norm_method,
|
352 |
+
printout=printout)
|
353 |
+
return wer_meas
|