lewtun HF staff commited on
Commit
f51669c
1 Parent(s): 8af023c

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -0
README.md ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ model-index:
8
+ - name: distilhubert-finetuned-music-genres-small
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ # distilhubert-finetuned-music-genres-small
16
+
17
+ This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the None dataset.
18
+ It achieves the following results on the evaluation set:
19
+ - Loss: 1.6827
20
+ - Accuracy: 0.4
21
+
22
+ ## Model description
23
+
24
+ More information needed
25
+
26
+ ## Intended uses & limitations
27
+
28
+ More information needed
29
+
30
+ ## Training and evaluation data
31
+
32
+ More information needed
33
+
34
+ ## Training procedure
35
+
36
+ ### Training hyperparameters
37
+
38
+ The following hyperparameters were used during training:
39
+ - learning_rate: 5e-05
40
+ - train_batch_size: 8
41
+ - eval_batch_size: 8
42
+ - seed: 42
43
+ - gradient_accumulation_steps: 2
44
+ - total_train_batch_size: 16
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - lr_scheduler_warmup_ratio: 0.1
48
+ - num_epochs: 5
49
+ - mixed_precision_training: Native AMP
50
+
51
+ ### Training results
52
+
53
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy |
54
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|
55
+ | No log | 0.99 | 56 | 2.0784 | 0.36 |
56
+ | 2.098 | 1.99 | 112 | 1.8533 | 0.35 |
57
+ | 2.098 | 2.99 | 168 | 1.7524 | 0.39 |
58
+ | 1.7241 | 3.99 | 224 | 1.6827 | 0.4 |
59
+ | 1.7241 | 4.99 | 280 | 1.6565 | 0.39 |
60
+
61
+
62
+ ### Framework versions
63
+
64
+ - Transformers 4.24.0
65
+ - Pytorch 1.11.0
66
+ - Datasets 2.6.1
67
+ - Tokenizers 0.11.6