leyuxzhang commited on
Commit
836ff87
1 Parent(s): c972339

My first fine tuned BERT

Browse files
Files changed (1) hide show
  1. README.md +89 -0
README.md ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: distilbert-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - emotion
8
+ metrics:
9
+ - accuracy
10
+ - f1
11
+ model-index:
12
+ - name: distilbert-base-uncased-finetuned-emotion
13
+ results:
14
+ - task:
15
+ name: Text Classification
16
+ type: text-classification
17
+ dataset:
18
+ name: emotion
19
+ type: emotion
20
+ config: split
21
+ split: validation
22
+ args: split
23
+ metrics:
24
+ - name: Accuracy
25
+ type: accuracy
26
+ value: 0.9395
27
+ - name: F1
28
+ type: f1
29
+ value: 0.9393105000343236
30
+ ---
31
+
32
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
33
+ should probably proofread and complete it, then remove this comment. -->
34
+
35
+ # distilbert-base-uncased-finetuned-emotion
36
+
37
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset.
38
+ It achieves the following results on the evaluation set:
39
+ - Loss: 0.3355
40
+ - Accuracy: 0.9395
41
+ - F1: 0.9393
42
+
43
+ ## Model description
44
+
45
+ More information needed
46
+
47
+ ## Intended uses & limitations
48
+
49
+ More information needed
50
+
51
+ ## Training and evaluation data
52
+
53
+ More information needed
54
+
55
+ ## Training procedure
56
+
57
+ ### Training hyperparameters
58
+
59
+ The following hyperparameters were used during training:
60
+ - learning_rate: 2e-05
61
+ - train_batch_size: 64
62
+ - eval_batch_size: 64
63
+ - seed: 42
64
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
65
+ - lr_scheduler_type: linear
66
+ - num_epochs: 10
67
+
68
+ ### Training results
69
+
70
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
71
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
72
+ | 0.0251 | 1.0 | 250 | 0.2793 | 0.9375 | 0.9377 |
73
+ | 0.0187 | 2.0 | 500 | 0.3246 | 0.931 | 0.9313 |
74
+ | 0.0147 | 3.0 | 750 | 0.3264 | 0.9365 | 0.9367 |
75
+ | 0.0116 | 4.0 | 1000 | 0.3252 | 0.938 | 0.9381 |
76
+ | 0.0097 | 5.0 | 1250 | 0.3036 | 0.9365 | 0.9366 |
77
+ | 0.0086 | 6.0 | 1500 | 0.3190 | 0.9395 | 0.9394 |
78
+ | 0.0063 | 7.0 | 1750 | 0.3181 | 0.939 | 0.9390 |
79
+ | 0.0042 | 8.0 | 2000 | 0.3493 | 0.938 | 0.9378 |
80
+ | 0.004 | 9.0 | 2250 | 0.3350 | 0.9405 | 0.9402 |
81
+ | 0.0025 | 10.0 | 2500 | 0.3355 | 0.9395 | 0.9393 |
82
+
83
+
84
+ ### Framework versions
85
+
86
+ - Transformers 4.34.0
87
+ - Pytorch 2.0.1+cu118
88
+ - Datasets 2.14.5
89
+ - Tokenizers 0.14.1