--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer datasets: - emotion metrics: - accuracy - f1 model-index: - name: distilbert-base-uncased-finetuned-emotion results: - task: name: Text Classification type: text-classification dataset: name: emotion type: emotion config: split split: validation args: split metrics: - name: Accuracy type: accuracy value: 0.9395 - name: F1 type: f1 value: 0.9393105000343236 --- # distilbert-base-uncased-finetuned-emotion This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the emotion dataset. It achieves the following results on the evaluation set: - Loss: 0.3355 - Accuracy: 0.9395 - F1: 0.9393 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.0251 | 1.0 | 250 | 0.2793 | 0.9375 | 0.9377 | | 0.0187 | 2.0 | 500 | 0.3246 | 0.931 | 0.9313 | | 0.0147 | 3.0 | 750 | 0.3264 | 0.9365 | 0.9367 | | 0.0116 | 4.0 | 1000 | 0.3252 | 0.938 | 0.9381 | | 0.0097 | 5.0 | 1250 | 0.3036 | 0.9365 | 0.9366 | | 0.0086 | 6.0 | 1500 | 0.3190 | 0.9395 | 0.9394 | | 0.0063 | 7.0 | 1750 | 0.3181 | 0.939 | 0.9390 | | 0.0042 | 8.0 | 2000 | 0.3493 | 0.938 | 0.9378 | | 0.004 | 9.0 | 2250 | 0.3350 | 0.9405 | 0.9402 | | 0.0025 | 10.0 | 2500 | 0.3355 | 0.9395 | 0.9393 | ### Framework versions - Transformers 4.34.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.14.1